Antioxidant Interrelationship

Any molecule with an atom that contains a single unpaired electron in its outer orbit is termed an oxidant. These atoms are unstable and have a strong attraction for the electrons of other atoms or molecules in order to regain their resting state. The process of transferring electrons to the oxidant is termed oxidation, and a new free radical is formed in the process.[3] The process can be self-perpetuating in unsaturated fatty acids found in membrane phospholipids and lipoproteins unless a more reactive electron donor, such as a-tocopherol, is introduced, whereupon the chain reaction is blocked. As described earlier, when lipid hydroperoxides are oxidized to peroxyl radicals, the peroxyl radicals react with a-tocopherol much faster than with other polyunsaturated fatty acids. The result is a corresponding organic hydroperoxide and an a-tocopheroxyl radical. The a-tocopheroxyl radical leaves the cell membrane lipid bilayer and enters the surrounding aqueous medium where glutathione perox-idase can use an electron from glutathione to restore a-tocopherol to its active or reduced state. Thus, although Se and vitamin E fulfill distinct functions, an inadequate supply of either can exacerbate the metabolic demand for the other.[8]

How To Bolster Your Immune System

How To Bolster Your Immune System

All Natural Immune Boosters Proven To Fight Infection, Disease And More. Discover A Natural, Safe Effective Way To Boost Your Immune System Using Ingredients From Your Kitchen Cupboard. The only common sense, no holds barred guide to hit the market today no gimmicks, no pills, just old fashioned common sense remedies to cure colds, influenza, viral infections and more.

Get My Free Audio Book


Post a comment