Ultrasound

Because of the technological development of real-time linear-array ultrasonic transducers and scanners in the medical field during the last decade, this technique has become the most common in vivo (and postmortem) technology in (farm) animal body composition assessment,[1] ranging from simple distance to area measurements using A-mode, B-mode, or M-mode devices. Two-dimensional ultrasound images provide information about adipose tissue depots and cross-sectional areas of muscles. In principle, the ultrasound device uses a probe to convert electronic energy to high-frequency ultrasonic energy that is capable of penetrating the body in short pulses. When these ultrasonic waves encounter an interface between two tissues that differ in acoustical properties, part of the ultrasonic energy is reflected back to the receiver probe. Variations in tissue depths result in time differences in reflected signals. Real-time images result from rapid electronic switching or linear array transducers. The practical application of ultrasound measurements of the live animal and carcass are being extended to genetic selection programs1-17-1 and on-line carcass evaluation.1-18-1

Weight Loss All Star

Weight Loss All Star

Are you looking to lose weight or even just tone up? What is stopping you from having the body you want and help you feel great at the same time? I created Weight Loss All-Star for all those wanting to lose weight, and keep the weight off. I know how hard it is to do diets and stick with them, and get the motivation to get up and exercise.

Get My Free Ebook


Post a comment