Oncogenes and Tumor Suppressors

How do carcinogens cause cancer? Answering this question still forms the core of much basic research, but a common feature of many carcinogens, particularly chemicals and radiation, is that they act as mutagens. Mutagens are agents that generate changes in DNA, sometimes by reacting with the DNA building blocks, guanine, adenine, thymine, and cytosine, which results in damaged DNA. When such damage remains in chromosomes, genes are often mutated in a way that impairs their normal function and enhances cancer induction. Cells try to prevent such mutations by repairing DNA damage, but they are not always successful. In fact, some individuals are susceptible to hereditary skin and colon cancers because they lack the ability to remove damaged DNA from chromosomes.

There are two general classes of genes that contribute to malignant tumor formation when they are mutated by carcinogens: oncogenes and tumor suppressor genes. Oncogenes (the prefix "onco-" meaning "tumor") are altered versions of normal genes called proto-oncogenes. Proto-oncogenes encode proteins that are often involved in regulating normal cell growth and division. When a proto-oncogene is mutated by exposure to a carcinogen, the protein it encodes may lose its ability to govern cell growth and division, often giving rise to the rapid, unrestrained cell proliferation that is characteristic of cancer. In such a case, the mutations in the proto-oncogene convert it into an actual oncogene.

While many oncogenes have been identified, numerous cancers are associated with mutations in one particular proto-oncogene, called ras, which is an abbreviation for "rat sarcoma." "Ras" is written as Ras when biologists refer to the protein, and as ras when they refer to the gene that encodes the protein. The ras gene encodes Ras protein, which acts to regulate cell growth. Normally, Ras protein cycles between an "off" and "on" form. Many carcinogens induce mutations in the ras proto-oncogene, converting it to a ras oncogene, which encodes a form of the Ras protein that is locked in the "on" state. By abolishing Ras protein's regulatory off/on cycle, the accumulated mutations in the ras gene contribute to the formation of malignancies.

Not all oncogenes arise from mutations in normal cellular proto-oncogenes. In the early twentieth century, Peyton Rous discovered a

10 Ways To Fight Off Cancer

10 Ways To Fight Off Cancer

Learning About 10 Ways Fight Off Cancer Can Have Amazing Benefits For Your Life The Best Tips On How To Keep This Killer At Bay Discovering that you or a loved one has cancer can be utterly terrifying. All the same, once you comprehend the causes of cancer and learn how to reverse those causes, you or your loved one may have more than a fighting chance of beating out cancer.

Get My Free Ebook


Post a comment