nucleotides or amino acids is indicative of function in the protein. For example, a protein may have a domain that binds to ATP or GTP, two important protein regulators.

In addition, these algorithms can detect sequences that denote a region involved in particular types of post-translational modifications, such as tyrosine phosphorylation. Tools such as prosite, blocks, prints, and Pfam can be used to detect and predict such protein domains in sequence data.

Structure is central to protein function, and another set of tools, including SWISS-MODEL, allows researchers to use gene and protein sequence data to predict a protein's three-dimensional structure. Such tools can help predict how mutations in a gene sequence could alter the three-dimensional structure of the corresponding protein. They accomplish such molecular modeling by comparing a novel sequence to the sequences of genes whose protein structures are known.

The majority of tools were developed as academic freeware distributed on the Internet. In the early- to mid-1990s, commercial companies began to develop their own proprietary algorithms and tools, as well as their own proprietary databases. Those databases were then marketed to pharmaceutical

The computer monitor of an automated gel sequencer displays a digital gel image. This data is more easily analyzed in this environment.

phosphorylation addition of the phosphate group PO43~

proprietary exclusively owned; private

0 0

Post a comment