client confidentiality, patent attorneys and agents are required to keep these developments secret until the information is made public by the client or a patent is issued.

While some patent attorneys only draft patent applications and work with patent examiners, others work as litigators, patent law experts, law school professors, or trademark lawyers. For complicated cases, patent attorneys with an education in genetics are very helpful in explaining the technology to the judge or jury. Although most patent attorneys work on patent cases in courts, their expertise may also be called upon in criminal cases, when assistance is needed to analyze and explain complex sciences such as genetics and molecular biology.

Salaries differ widely among patent attorneys and agents who work in law firms, companies, and at universities. As of 2000, new Ph.D.-level patent attorneys could expect to earn at least $100,000 per year, while new Ph.D.-level patent agents could expect to earn at least $75,000 per year. However, some patent attorneys could earn well over $500,000 per year. see also Legal Issues; Patenting Genes.

Kamrin T. MacKnight


U.S. Patent and Trademark Office, Manual of Patent Examining Procedure. Washington, DC: Superintendent of Documents, U.S. Government Printing Office, 2000.

Automated Sequencer

The process of determining the order of nucleotides (A, C, G, and T) along a DNA strand is called DNA sequencing. Knowing the nucleotide sequence of a gene or region of DNA is important in studying relatedness between species and between individuals and for a better understanding of how genes function. Several techniques have been developed for "reading" the sequence of any particular DNA segment. One of these techniques was developed by Fred Sanger in 1977 and is called the chain termination method (or Sanger method). The essence of the technique is the creation of a set of DNA fragments that match the chain to be sequenced. Each fragment is one nucleotide longer than the last. By determining the identity of the final nucleotide in each fragment, the sequence of the whole chain can be determined.

The chain termination method makes use of special forms of the four nucleotides that, when incorporated at the end of a growing chain during DNA synthesis, stop (terminate) further chain growth. In four separate reactions, each containing a different terminator base (called a dideoxynu-cleotide), a collection of single-stranded fragments is made. These fragments all differ in length and all end in the dideoxynucleotide added to the particular reaction. Gel electrophoresis is then used to separate the fragments according to their length. By knowing which terminator base is associated with which fragment on the gel, the base sequence can be constructed.

0 0

Post a comment