References

1. Geesey, G. G., Microbial exopolymers: ecological and economic considerations, ASM News, 48, 14 (1982).

2. Lewis, D.L., and Gattie, D.K., Effects of cellular aggregation on the ecology of microorganisms, ASM News, 56, 263 (1990).

3. Friedman, B.A., Dugan, P.R., Pfister, R.M., and Remsen, C.C., Structure of exocellular polymers and their relationship to bacterial flocculation, J. Bacteriol., 98, 1328 (1969).

4. ZoBell, C.E., and Allen, E.C., The significance of marine bacteria in the fouling of submerged surfaces, J. Bacteriol., 29, 239 (1935).

5. ZoBell, C.E., The effect of solid surfaces upon bacterial activity, J. Bacteriol., 46, 39 (1943).

6. Unz, R.F., and Farrah, S.R., Exopolymer production and flocculation by Zoogloea MP6, Appl. Environ. Microbiol., 31, 623 (1976).

7. Silver, M.W., Shanks, A.L., and Trent, J.D., Marine snow: microplankton habitat and source of small-scale patchiness in pelagic populations, Science, 201, 371 (1978).

8. Jorand, F., Zartarian, F., Thomas, F., Block, J.-C., Bottero, J.Y., Villemin, G., Urbain, V., and Manem, J., Chemical and structural (2D) linkage between bacteria within activated sludge flocs, Water Res., 29, 1639 (1995).

9. Moller, S., Sternberg, C., Andersen, J.B., Christensen, B.B., Ramos, J. L., Givskov, M., and Molin, S., In situ gene expression in mixed-culture biofilms: evidence of metabolic interactions between community members, Appl. Environ. Microbiol., 64, 721 (1998).

10. Baty, A.M., Eastburn, C., Diwu, Z., Techkarnjanaruk, S., Goodman, A. E., and Geesey, G.G., Differentiation of chitinase-active and non-chitinase-active subpopulations of a marine bacterium during chitin degradation, Appl. Environ. Microbiol., 66, 3566 (2000).

11. Abrahamson, M., Lewandowski, Z., Geesey, G.G., Sjak-Braek, G., Strand, W., and Christensen, B.E., Development of an artificial biofilm to study the effects of a single microcolony on mass transport, J. Microbiol. Methods, 26, 161 (1996).

12. Cadoret, A., Conrad, A., and Block, J.-C., Availability of low and high molecular weight substrates to extracellular enzymes in whole and dispersed activated sludges, Enzyme Microb. Technol., 31, 179 (2002).

13. Suci, P.A., Vrany, J.D., and Mittelman, M.W., Investigation of interactions between antimicrobial agents and bacterial biofilms using attenuated total reflection Fourier transform infrared spectroscopy, Biomaterials, 19, 327 (1998).

14. Fattorini, I., Scardaci, G., Jin, H., Amicosante, G., Franceschini, N., Oratore, A., and Orefici, G., B-lactamase of Mycobacterium fortuitium: kinetics of production and relationship with resistance to B-lactam antibiotics, Antimicrob. Agents Chemother., 35, 1760 (1991).

15. Boczar, B.A., Forney, L.J., Begley, W.M., Larson, R.J., and Federle, T.W., Characterization and distribution of esterase activity in activated sludge, Water Res., 35, 4208 (2001).

16. van Hamersveld, E.H., van der Lans, R.G. J.M., Caulet, P.J. C., and Luyben, K.C. A.M., Modeling brewersapos yeast flocculation, Biotechnol. Bioeng., 57, 330 (1998).

17. Kosakai, Y., Soo Park, Y., andOkabe, M., Enhancement of L(+)-lactic acid production using mycelial flocs of Rhizopus oryzae, Biotechnol. Bioeng., 55, 461 (1997).

18. Lenter, C.M., McDonald, J.L. M., Skousen, J.G., and Ziemkiewicz, P. F., The effects of sulfate on the physical and chemical properties of actively treated acid mine drainage floc, Mineral Water Environ., 21, 114 (2002).

19. Laspidou, C.S., and Bruce, E.R., A unifying theory for extracellular polymeric substances, soluble microbial products, active and inert biomass, Water Res., 11, 2711 (2002).

20. Hsieh, K.M., Murgel, G.A., Lion, L., and Shuler, M.L., Interactions of microbial biofilms with toxic trace metals. Observation and modeling of cell growth, attachment, and production of extracellular protein, Biotechnol. Bioeng., 44, 219-231 (1994).

21. Sponza, D.T., Investigation of extracellular polymer substances (EPS) and physico-chemical properties of different activated sludge flocs under steady-state conditions, Enzyme Microb. Technol., 32, 375 (2003).

22. Dueholm, T.E., Andreasen, K.H., and Nielsen, P.H., Conceptual model for the transformation of long chain fatty acids and triglycerides in activated sludge, Water Sci. Technol., 43, 165 (2000).

23. Gessesse, A., Dueholm, T.E., Petersen, S.B., and Nielsen, P.H., Lipase and protease extraction from activated sludge, Water Res., 37, 3652 (2003).

24. Sutherland, I.W., Polysaccharases for microbial exopolysaccharides, Carbohydr. Res., 38, 319 (1999).

25. Toerien, D.F., Gerber, A., Lotter, L.H., and Cloete, T.E., Enhanced biological phosphorus removal in activated sludge systems, Adv. Microb. Ecol., 11, 173 (1990).

26. Christensson, M., Blackall, L.L., and Welander, T., Metabolic transformations and characterization of the sludge community in an enhanced biological phosphorus removal system, Appl. Microbiol. Biotechnol., 49, 226 (1998).

27. Van Niel, E.W.J., Appeldoom, K.J., Zehnder, A.J.B., and Kortstee, G.J.J. Inhibition of anaerobic phosphate release by nitric oxide in activated sludge, Appl. Environ. Microbiol., 64, 2925 (1998).

28. Fuhs, G.W., and Chen, M., Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater, Microb. Ecol., 2, 119 (1975).

29. Kulaev, I.S., and Vagabov, V.M., Polyphosphate metabolism in micro-organisms, Adv. Microb. Physiol., 24, 83 (1983).

30. Rao, N.N., Roberts, M.F., and Torriani-Gorini, A., Polyphosphate accumulation and metabolism in Escherichia coli, in Phosphate metabolism and cellular regulation in microorganisms, Yagil, E., Ed., American Society for Microbiology, Washington, DC, p. 213 (1987).

31. Chrost, R.J., Environmental control of the synthesis and activity of aquatic microbial ectoenzymes, in Microbial enzymes in aquatic environments, Chrost, R.J., Ed., Springer-Verlag, New York, p. 29 (1991).

Streichan, M., Golecki, J.R., and Schon, G., Polyphosphate-accumulating bacteria from sewage plants with different processes for biological phosphorus removal, FEMS Microb. Ecol, 73, 113 (1990).

Wagner, M., Erhart, R., Manz, W., Amann, R., Lemmer, H., Wedi, D., and Schleifer, K.H., Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge, Appl. Environ. Microbiol., 60, 792 (1994).

Gachter, R., Meyer, J.S., and Mares, A., Contribution of bacteria to release and fixation of phosphorus in lake sediments, Limnol. Oceanogr., 33, 1542 (1998). Halvorson, H.O., Suresh, N., Roberts, M.F., Coccia, M., and Chikarmane, H.M., Metabolically active surface polyphosphate pool in Acinetobacter Iwoffi, in Phosphate metabolism and cellular regulation in microorganisms, Yagil, E., Ed., American Society for Microbiology, Washington, D.C., p. 220 (1987).

Goel, R., Takashi, M., Satoh, H., and Matsuo, T., Comparison of hydrolytic enzyme systems in pure culture and activated sludge under different electron acceptor conditions, WaterSci. Tech., 37, 335 (1998).

Whiteley, C.G., Heron, P., Pletschke, B., Rose, P.D., Tshivhunge, S., and Van Jaarsveld, F.P., The enzymology of sludge solubilization utilizing sulfate reducing systems. Properties of proteases and phosphatases, Enzyme Microb. Technol., 31, 419 (2002).

Pletschke, B.I., Rose, P.D., and Whiteley, C.G., The enzymology of sludge solubilization utilizing sulfate reducing systems. Identification and properties of ATP-sulfurylases, Enzyme Microbial. Technol., 31, 329 (2002). Frolund, B., Griebe, T., and Nielsen, P.H., Enzymatic activity in the activated-sludge floc matrix, Appl. Microbiol. Biotechnol., 43, 755 (1995).

Whiteley, C.G., Burgess, J.E., Melamane, X., Pletschke, B., and Rose, P.D., The enzymology of sludge solubilization utilizing sulfate-reducing systems: the properties of lipases, Water Res., 37, 289 (2003).

Van Ommen Kloeke, F., and Geesey, G.G., Localization and identification of populations of phosphatase-active bacterial cells associated with activated sludge, Microb. Ecol., 38, 201 (1999).

Chrost, R.J., and Overbeck, J., Kinetics of alkaline phosphatase activity and phosphorous availability for phytoplankton and bacterioplankton in Lake Plubsee (north German eutrophic lake), Microb. Ecol., 13, 229 (1987).

Ollson, H., Phosphatase activity in an acid, limed Swedish lake, in Microbial enzymes in aquatic environments, Chrost, R.J., Ed., Springer-Verlag, New York, p. 206 (1991). Richards, S.R., Hastwell, C., and Davies, M., The comparative examination of 14 activated-sludge plants using enzymatic techniques, J. Water Pollut. Control Fed., 83, 300 (1984).

Teuber, M., and Brodish, K.E. U., Enzymatic activities of activated sludge, Eur. J. Appl. Microbiol., 4, 185 (1977).

Guellil, A., Thomas, F., Block, J.-C., Bersillon, J.-L., and Ginestet, P., Transfer of organic matter between wastewater and activated sludge flocs, Water Res., 35, 143 (2001).

Manz, W., Amann, R., Ludwig, W., Vancanney, M., and Schleifer, K.-H., Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-flavobacter-bacteroides in the natural environment, Microbiology, 142, 1097 (1996).

Gude, H., Occurrence of Cytophagas in sewage plants, Appl. Environ. Microbiol., 39, 756 (1980).

49. Bond, P.L., Hugenholtz, P., Keller, J., and Blackall, L.L., Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors, Appl. Environ. Microbiol., 61, 1910 (1995).

50. Snaidr, J., Amann, R., Huber, I., Ludwig, W., and Schleifer, K.-H., Phylogenetic analysis and in situ identification of bacteria in activated sludge, Appl. Environ. Microbiol., 63, 2884 (1997).

51. Van Ommen Kloeke, F., Baty, A.M., Eastburn, C., Diwu, Z., and Geesey, G.G., A novel method for screening bacterial colonies for phosphatase activity, J. Microbiol. Methods, 38, 25 (1999).

52. Haugland, R.P., Zhang, Y.-Z., Yue, S.T., Terpetschnig, E., Olson, N. A., Naleway, J.J., Larison, K.D., and Huang, Z.M., Enzymatic analysis using substrates that yield fluorescent precipitates, US Patent 748 860 (1994).

Molecular Analyses of Microbial Community Structure and Function of Flocs

Lower Your Cholesterol In Just 33 Days

Lower Your Cholesterol In Just 33 Days

Discover secrets, myths, truths, lies and strategies for dealing effectively with cholesterol, now and forever! Uncover techniques, remedies and alternative for lowering your cholesterol quickly and significantly in just ONE MONTH! Find insights into the screenings, meanings and numbers involved in lowering cholesterol and the implications, consideration it has for your lifestyle and future!

Get My Free Ebook


Post a comment