1. Fowler, S.W. and Knauer, G.A., Role of large particles in the transport of elements and organic compounds through the oceanic water column, Prog. Oceanogr., 16, 147, 1986.

2. Hanson, R.B., Ducklow, H.W., and Field, J.G., The Changing Ocean Carbon Cycle: A Midterm Synthesis of the Joint Global Ocean Flux Study, Cambridge University Press, 2000.

3. Angel, M.V., Does mesopelagic biology affect the vertical flux?, in Productivity of the Oceans: Present and Past, Berger, W.H., Smetacek, V.S., and Wefer, G., Eds., John Wiley, New York, 1989.

4. Perret, D. et al., Electron microscopy of aquatic colloids: non-perturbing preparation of specimens in the field, Water Res., 25, 1333, 1991.

Lienemann, C.-P. et al., Association of cobalt and manganese in aquatic systems: chemical and microscopic evidence, Geochim. Cosmochim. Acta, 61, 1437, 1997. Taillefert, M. et al., Speciation, reactivity, and cycling of Fe and Pb in a meromictic lake, Geochim. Cosmochim. Acta, 64, 169, 2000.

Perret, D. et al., The diversity of natural hydrous iron oxides, Environ. Sci. Technol., 34, 3540, 2000.

Liss, S.N. et al., Floc architecture in wastewater and natural riverine systems, Environ. Sci. Technol., 30, 680, 1996.

Wilkinson, K.J., Joz-Roland, A., and Buffle, J., Different roles of pedogenic fulvic acids and aquagenic biopolymers on colloidal aggregation and stability in freshwaters, Limnol. Oceanogr., 42, 1714, 1997.

Buffle, J. et al., A generalized description of aquatic colloidal interactions: the three-colloidal component approach, Environ. Sci. Technol., 32, 2887, 199. Alldredge, A.L. and Gotschalk, C., Direct observations of the mass flocculation of diatom blooms: characteristics, settling velocities and formation of diatom aggregates, Deep Sea Res., 36, 159, 1989.

Wells, M.L. and Goldberg, E.D., Colloid aggregation in seawater, Mar. Chem., 41, 353, 1992.

Heissenberger, A., Leppard, G.G., and Herndl, G.J., Ultrastructure of marine snow: II. Microbiological considerations, Mar. Ecol. Prog. Ser., 135; 299, 1996. Santschi, P.H. et al., Fibrillar polysaccharides in marine macromolecular organic matter as images by atomic for microscopy and transmission electron microscopy, Limnol. Oceanogr., 43, 896, 1998.

Sheldon, R.W., Prakash, A., and Sutcliffe, W.H., The size distribution of particles in the ocean. Limnol. Oceanogr., 17, 327, 1972.

Hunt, J.R., Prediction of oceanic particle size distributions from coagulation and sedimentation mechanisms, in Particles in Water, Kavanaugh, M.C. and Leckie, J.O., Eds., American Chemical Society, pp. 234-257, 1980.

Eisma, D., Flocculation and de-flocculation of suspended matter in estuaries, Neth. J. Sea Res., 20, 183, 1986.

Sternberg, R.W. et al., Suspended sediment transport under estuarine tidal channel conditions, Sediment. Geol., 57, 257, 1988.

Jackson, G.A. et al., Particle size spectra between 1 ¡m and 1 cm at Monterey Bay determined using multiple instruments, Deep Sea Res., 44, 1739, 1997. Santschi, P.H. et al., Boundary exchange and scavenging of radionuclides in continental margin waters of the Middle Atlantic Bight. Implications for organic carbon fluxes, Continental Shelf Res., 19, 609, 1999.

Asper, V.L., Measuring the flux and sinking speed of marine snow aggregates, Deep Sea Res., 34, 1, 1987.

Silver, M.W. and Gowing, M.W., The "particle" flux: origins and biological components, Prog. Oceanogr., 26, 75, 1991.

Lampitt, R.S., Hillier, W.R., and Challenor, P.G., Seasonal and diel variations in the open ocean concentration of marine snow aggregates, Nature, 362, 737, 1993. Deuser, W.G. et al., Seasonal changes in the species composition, numbers, mass, size, and isotopic composition of planktonic foraminifera settling into the deep Sargasso Sea, Paleogeogr. Paleoclimat. Paleoecol., 33, 103, 1981.

Asper, V.L. et al., Rapid coupling of sinking particle fluxes between surface and deep ocean waters, Nature, 357, 670, 1992.

Conte, M.H., Ralph, N., and Ross, E.H., Seasonal and interannual variability in deep ocean particle fluxes at the Oceanic Flux Program (OFP)/Bermuda Atlantic Time Series

(BATS) site in the western Sargasso Sea near Bermuda, Deep Sea Res. II, 48, 1471, 2001.

27. Guo, L., Santschi, P.H., and Warnken, K.W., Dynamics of dissolved organic carbon (DOC) in oceanic environments, Limnol. Oceanogr., 40, 1392, 1995.

28. Wells, M.L. and Goldberg, E.D., Occurrence of small colloids in seawater, Nature, 353,342, 1991.

29. Wells, M.L. and Goldberg, E.D., The distribution of colloids in the North Atlantic and Southern Oceans, Limnol. Oceanogr., 39, 286, 1994.

30. Degueldre, C. et al., Colloid properties in granitic groundwater systems. I: Sampling and characterization, Appl. Geochem., 11, 677, 1996.

31. Leppard, G.G., Colloidal organic fibrils of acid polysaccharides in surface waters: electron-optical characteristics, activities and chemical estimates of abundance, Colloids Surf. A, 120, 1, 1997.

32. Wilkinson, K.J. et al., Characteristic features of the major component of freshwater colloidal organic matter revealed by transmission electron and atomic force microscopy, Colloids Surf. A. Physiochem. Eng. Aspects, 155, 287, 1999.

33. Leppard, G.G. et al., A classification scheme for marine organic colloids in the Adriatic Sea: colloid speciation by transmission electron microscopy, Can. J. Fish. Aquat. Sci., 54, 2334, 1997.

34. Hung, C.-C. et al., Distributions of carbohydrate species in the Gulf of Mexico, Mar. Chem., 81, 119, 2003a.

35. McCave, I.N., Size spectra and aggregation of suspended particles in the deep ocean, Deep Sea Res., 31, 329, 1984.

36. Jackson, G.A. and Burd, A.B., Aggregation in the marine environment: a critical review. Environ. Sci. Technol., 32, 2805, 1998.

37. Alldredge, A.L., Passow, U., and Logan, B.E., The abundance and significance of a class of large, transparent organic particles in the ocean, Deep Sea Res., 40, 1131, 1993.

38. Passow, U., Alldredge, A.L., and Logan, B.E., The role of particulate carbohydrate exudates in the flocculation of diatom blooms, Deep Sea Res., 41, 335, 1994.

39. Mopper, K.J. et al., The role of surface-active carbohydrates in the flocculation of a diatom bloom in a mesocosm, Deep Sea Res. II, 42, 47, 1995.

40. Grossart, H.-P., Simon, M., and Logan, B., Formation of macroscopic organic aggregates (lake snow) in a large lake: the significance of transparent exopolymer particles (TEP), phytoplankton and zooplankton, Limnol. Oceanogr., 42, 1651, 1997.

41. Mari, X. and Burd, A.B., Seasonal size spectra of transparent exopolymeric particles (TEP) in a coastal sea and comparison with those predicted using coagulation theory, Mar. Ecol. Prog. Ser., 163, 63, 1998.

42. Leppard, G.G., The characterization of algal and microbial mucilages and their aggregates in aquatic systems, Sci. Total. Environ., 165, 103, 1995.

43. Passow, U. and Alldredge, A.L., Aggregation of a diatom bloom in a mesocosm: the role of transparent exopolymer particles (TEP), Deep Sea Res. II, 42, 99, 1995.

44. Zhou, J., Mopper, K., and Passow, U., The role of surface-active carbohydrates in the formation of transparent exopolymer particles (TEP) by bubble adsorption of seawater, Limnol. Oceanogr., 43, 1860, 1998.

45. Passow, U., Formation of transparent exopolymer particles, TEP, from dissolved precursor material. Mar. Ecol. Prog. Ser., 192, 1, 2000.

46. Passow, U., Production of transparent exopolymer particles (TEP) by phyto- and bacterioplankton, Mar. Ecol. Prog. Ser., 236, 1, 2002.

Santschi, P.H. et al., Control of acid polysaccharide production, and 234Th and POC export fluxes by marine organisms, Geophysical Res. Lett., 30(2), doi: 10.1029/2002GL016046, 2003.

Hung, C.-C. et al., Production and fluxes of carbohydrate species in the Gulf of Mexico, Global Biogeochem. Cycles, 17(2), 1055, doi:10.1029/2002GB001988, 2003b.

Buesseler, K.O., The de-coupling of production and particle export in the surface ocean, Global Biogeochem. Cycles, 12, 297, 1998.

Baskaran, M. et al., 234Th:238U disequilibria in the Gulf of Mexico: importance of organic matter and particle concentration, Continental Shelf Res. ,16, 353, 1996. Leppard, G.G., Massalski, A., and Lean, D.R.S., Electron-opaque microscopic fibrils in lakes: their demonstration, their biological derivation and their potential significance in the redistribution of cations, Protoplasma, 92, 289, 1977.

Benner, R.J.D. et al., Bulk chemical characteristics of dissolved organic carbon, Science, 255, 1561, 1992.

Guo, L., Coleman, C.H., Jr., and Santschi, P.H., The distribution of colloidal and dissolved organic carbon in the Gulf of Mexico, Mar. Chem., 45, 105, 1994. Santschi, P.H. et al., Isotopic evidence for the contemporary origin of high molecular-weight organic matter in oceanic environments, Geochim. Cosmochim. Acta, 59, 625, 1995.

Quigley, M.S. et al., Sorption irreversibility and coagulation behavior of 234Th with surface-active marine organic matter, Mar. Chem., 76, 27, 2001. Quigley, M.S. et al., Importance of polysaccharides for 234Th complexation to marine organic matter, Limnol. Oceanogr., 47, 367, 2002.

Hill, P.S., Reconciling aggregation theory with observed vertical fluxes following phytoplankton blooms, J. Geophys. Res., 97, 2295, 1992.

Balistrieri, L.S. and Murray, J.W., The surface chemistry of sediments from the Panama Basin: the influence of Mn oxides on metal adsorption, Geochim. Cosmochim. Acta, 50, 2235, 1986.

Buffle, J., Complexation Reactions in Aquatic Systems, Ellis Horwood, Chichester, West Sussex, England 1988.

Stumm, W., Chemistry of the Solid-Water Interface: Processes at the Mineral-Water and Particle-Water Interface in Natural Systems, Wiley, New York, 1992. Santschi, P.H., Lenhart, J., and Honeyman, B.D., Heterogeneous processes affecting trace contaminant distribution in estuaries: the role of natural organic matter, Mar. Chem., 58, 99, 1997.

Cowen, J.P. and Bruland, K.W., Metal deposits associated with bacteria-implications for Fe and Mn marine biogeochemistry, Deep Sea Res., 32, 253, 1985. Kinrade, S.D. and Knight, C.T.G., Silicon-29 NMR evidence of a transient hexavalent silicon complex in the diatom Navicula pelliculosa, J. Chem. Soc. Dalton Trans., 3, 307, 2002.

Leveille, R.J., Fyfe, W.S., and Longstaffe, F.J., Geomicrobiology of carbonate-silicate microbioalites from Hawaiian basaltic sea caves, Chem. Geol., 169, 339, 2000. Dickinson, E., Hydrocolloids at interfaces and the influence on the properties of dispersed systems, Food Hydrocolloids, 17, 25, 2003.

Liao, B.Q. et al., Surface properties of sludge and their role in bioflocculation and settleability. Water Res., 35, 339, 2001.

Liao, G.Q., et al., Interparticle interactions affecting the stability of sludge flocs. J. Colloid Interface Sci., 249, 372, 2002.

68. Leppard, G.G., Droppo, I.G., West, M.M., and Liss, S.N., Compartmentalization of metals within the diverse colloidal matrices comprising activated sludge microbial flocs. J. Environ. Quality, 32, 2100.

69. Stenstorm, T.A., Bacterial hydrophobicity, an overall parameter for the measurement of adhesion potential to soil particles, Appl. Environ. Microbiol., 55, 142, 1989.

70. Thurman, E.M., Organic Geochemistry of Natural Waters, Martinus Nijhoff/ Dr. W. Junk Publishers, Dordrecht, 1985.

71. Decho, A.W., Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes, Oceanogr. Mar. Biol. Ann. Rev., 28, 73, 1990.

72. Buffle, J. and Leppard, G.G., Characterization of aquatic colloids and macromolecules. I. Structure and behavior of colloidal material, Environ. Sci. Technol., 29, 2169, 1995.

73. Aluwihare, L.I., Repeta, D.J., and Chen, R.F., A major biopolymeric component to dissolved organic carbon in surface sea water, Nature, 387, 166, 1997.

74. Pinheiro, J.P. etal., The pH effect in the diffusion coefficient of humic matter: influence in speciation studies using voltammetric techniques. Colloids Surf. A-Physiochem. Eng. Aspects, 137, 165, 1998.

75. Balnois, E. et al., Conformations of succinoglycans as observed by atomic force microscopy. Macromolecules, 33, 7440, 2000.

76. Balnois, E. and Wilkinson, J.K., Sample preparation techniques for the observation of environmental biopolymers by atomic force microscopy, Colloids Surf. A: Physicochem. Eng. Aspects, 207, 229, 2002.

77. Meakin, P., Fractals, Scaling and Growth Far from Equilibrium, Cambridge University Press, 1998.

78. Vicsek, T., Fractal Growth Phenomena, 2nd edition, World Scientific, Singapore, 1992.

79. Gouyet, J.-F., Physics and Fractal Structures, Springer, 1996.

80. Alldredge, A.L. and Gotschalk, C., In-situ settling behavior of marine snow, Limnol. Oceanogr., 33, 339, 1988.

81. Logan, B.E. and Wilkinson, D.B., Fractal geometry of marine snow and other biological aggregates, Limnol. Oceanogr., 39, 130, 1990.

82. Klips, J.R., Logan, B.E., and Alldredge, A.L., Fractal dimensions of marine snow determined from image analysis of in situ photographs, Deep Sea Res., 41, 1159, 1994.

83. Li, X. and Logan, B.E., Size distributions and fractal properties of particles during a simulated phytoplankton bloom in amesocosm, Deep Sea Res. II, 42; 125, 1995.

84. Jackson, G.A. et al., Combining particle size spectra from a mesocosm experiment measured using photographic and aperture impedance (Coulter and Elzone) techniques, Deep Sea Res. II, 42, 139, 1995.

85. Hawley, N., Settling velocity distribution of natural aggregates, J. Geophys. Res., 87, 9489, 1982.

86. De Boer, D.H., Stone, M., and Levesque, L.M.J., Fractal dimensions of individual flocs and floc populations in streams, Hydrolog. Proc., 14, 653, 2000.

87. Li, D.-H. and Ganczarczyk, J.J., Fractal geometry of particle aggregated in water and wastewater treatment processes, Environ. Sci. Technol., 23, 1385, 1989.

88. Amal, R., Raper, J.A., and Waite, T.D., Fractal structure of hematite aggregates, J. Colloid Interface Sci., 140, 158, 1990.

89. Johnson, C.P., Li, X., and Logan, B., Settling velocities of fractal aggregates, Environ. Sci. Technol., 30, 1911, 1996.

Guan, J., Waite, T.D., and Amal, R. Rapid structure characterization of bacterial aggregates, Environ. Sci. Technol., 32, 3735, 1996.

Engel, A. and Schartau, M., Influence of transparent exopolymer particles (TEP) on sinking velocity of Nitzchia closterium aggregates, Mar. Ecol. Prog. Ser., 182, 69, 1999.

Honeyman, B.D. and Santschi, P.H., A Brownian-pumping model for oceanic trace metal scavenging: evidence from Th isotopes, J. Mar. Res., 47, 951, 1989. Honeyman, B.D. and Santschi, P.H., Coupling of trace metal adsorption and particle aggregation: kinetic and equilibrium studies using 59Fe-labeled hematite, Environ. Sci. Technol., 25, 1739, 1991.

Stordal, M.C., Santschi, P.H., and Gill, G.A., Colloidal pumping: evidence for the coagulation process using natural colloids tagged with 203Hg, Environ. Sci. Technol., 30, 3335, 1996.

Wen, L.S., Santschi, P.H., and Tang, D., Interactions between radioactively labeled colloids and natural particles: evidence for colloidal pumping, Geochim. Cosmochim. Acta, 61, 2867, 1997.

Burd, A.B., Moran, S.B., and Jackson, G.A., A coupled adsorption-aggregation model of the POC/Th ratio of marine particles, Deep Sea Res., 47, 103, 2000. Pruppacher, H.R. and Klett, J.D., Microphysics of Clouds and Precipitation, Riedel, 1980.

Burd, A.B. and Jackson, G.A., The evolution of particle size spectra I: pulsed input, J. Geophys. Res., 102, 10545, 1997.

Li, X. and Logan, B.E., Collision frequencies of fractal aggregates with small particles by differential sedimentation, Environ. Sci. Technol., 31, 1229, 1997. Li, X. and Logan, B.E., Collision frequencies between fractal aggregates and small particles in a turbulently sheared fluid, Environ. Sci. Technol., 31, 1237, 1997a. Burd, A.B. and Jackson, G.A., Modeling steady state particle size spectra, Environ. Sci. Technol., 36, 323, 2002.

Jackson, G.A., Comparing observed changes in particle size spectra with those predicted using coagulation theory, Deep Sea Res. II, 42, 159, 1995. van Oss, C.J., Interfacial Forces in Aqueous Media, Marcel Dekker, New York, 1994. Israelachvili, J., Intermolecular and Surface Forces, 2nd edition, Academic Press, New York, 1992.

Grasso, D. et al., A review of non-DLVO interactions in environmental colloidal systems, Rev. Env. Sci. Biotechnol., 1,17, 2002.

Rijnaarts, H.H.M. et al., DLVO and steric contributions to bacterial deposition in media of different ionic strengths, Colloids Surf. B: Biointerfaces, 14, 179, 1999. Azeredo, J., Visser, J., and Oliveira, R., Exopolymers in bacterial adhesion: interpretation in terms of DLVO and XDLVO theories, Colloids Surf. B: Biointerfaces, 14, 141,

0 0

Post a comment