1. Sheldon, R.W., Prakash, A., and Sutcliffe, W.H., The size distribution of particles in the ocean. Limnol. Oceanogr. 17, 327, 1972.

2. Gardner, W.D., Incomplete extraction of rapidly settling particles from water samplers. Limnol. Oceanogr. 22, 764, 1977.

3. Platt, T., and Denman, K., Organization in the pelagic ecosystem. Helgoland Wiss. Meer. 30, 575, 1977.

4. Silvert, W., and Platt, T., Energy flux in the pelagic ecosystem: a time dependence equation. Limnol. Oceanogr. 23, 813, 1978.

5. Rodriquez, J., and Mullin, M.M., Relation between biomass and body weight of plankton in a steady state oceanic ecosystem. Limnol. Oceanogr. 31, 361, 1986.

6. Kiefer, D.A., and Berwald, J., A random encounter model for the microbial planktonic community. Limnol. Oceanogr. 37, 457, 1992.

7. Zhou M., and Huntley, M.E., Population dynamics theory of plankton based on biomass spectra. Mar. Ecol. Prog. Ser. 159, 61, 1997.

8. Hunt, J.R., Particle dynamics in seawater: implication for predicting the fate of discharged particles. Environ. Sci. Technol. 16, 303, 1982.

9. Hunt, J.R., Prediction of oceanic particles size distributions from coagulation and sedimentation mechanisms, in Particulates in water, Kavanaugh, M.C., and Leckie, J.O., Eds., American Chemical Society, Washington, DC, p.243, 1980.

10. Trent, J.D., Shanks, A.L., and Silver, M.W., In situ and laboratory measurements on macroscopic aggregates in Monterey Bay, California. Limnol. Oceanogr. 23, 626, 1978.

11. Kranck, K., and Milligan, T., Macroflocs: production of marine snow in the laboratory. Mar. Ecol. Prog. Ser. 3, 19, 1980.

12. Kranck, K., and Milligan, T., Macroflocs from diatoms: in situ photography of particles in Bedford Basin, Nova Scotia. Mar. Ecol. Prog. Ser. 4, 183, 1988.

13. Alldredge, A.L., and Silver, M.W., Characteristics, dynamics, and significance of marine snow. Prog. Oceanogr. 20, 41, 1988.

14. Alldredge, A.L., and Gotschalk, C., In situ settling behavior of marine snow. Limnol. Oceanogr. 33, 339, 1988.

15. Logan, B.E., and Wilkinson, D.B., Fractal geometry of marine snow and other biological aggregates. Limnol. Oceanogr. 35, 130, 1990.

16. O'Melia, C.R., An approach to modeling of lakes. Schweiz. Zeitsch. Hydrol. 34, 1, 1972.

17. Edzwald, J.K., Upchurch, J.B., and O'Melia, C.O., Coagulation in estuaries. Environ. Sci. Technol. 8, 58, 1974.

18. O'Melia, C.R., and Bowman, K.S., Origins and effects of coagulation in lakes. Schweiz. Zeitsch. Hydrol. 46, 64, 1984.

19. Weilenmann, U., O'Melia, C.R., and Stumm, W., Particle transport in lakes: models and measurement. Limnol. Oceanogr. 34, 1, 1989.

20. Friedlander, S.K., Smoke, dust and haze, Wiley, New York, 317 pp., 1977.

21. McCave, I., Size spectra and aggregation of suspended particles in the deep ocean. Deep Sea Res. 31, 329, 1984.

22. Jackson, G.A., A model of the formation of marine algal flocs by physical coagulation processes. Deep Sea Res. 37, 1197, 1990.

23. Jackson, G.A., and Lochmann, S.E., Effect of coagulation on nutrient and light limitation of an algal bloom. Limnol. Oceanogr. 37, 77, 1992.

24. Hill, P., Reconciling aggregation theory with observed vertical fluxes following phytoplankton blooms. J. Geophys. Res. 97, 2295, 1992.

25. Fenchel, T., Suspended bacteria as a food source, in Flows of energy and materials in marine ecosystems, Fasham, M.J.R., Ed., Plenum Press, New York, p. 301, 1984.

26. Rothschild, B.J., and Osborn, T.R., Small-scale turbulence and plankton contact rates. J. Plankton Res., 10, 465, 1988.

27. Shimeta, J., and Jumars, P.A., Physical mechanism and rates of particle capture by suspension-feeders. Oceanogr. Mar. Biol. Ann. Rev. 29, 191, 1991.

28. Murray, A.G., and Jackson, G.A., Viral dynamics: amodel of the effects of size, shape, motion and abundance of single-celled planktonic organisms and other particles. Mar. Ecol. Prog. Ser. 89, 103, 1992.

29. Ki0rboe, T. Colonization of marine snow aggregates by invertebrate zooplankton: abundance, scaling and possible role. Limnol. Oceanogr. 45, 479, 2000.

30. Ki0rboe T., and Thygesen, U.H., Fluid motion and solute distribution around sinking aggregates. II. Implications for remote detection by colonizing zooplankters. Mar. Ecol. Prog. Ser. 211, 15, 2001.

31. Falconer, K.J., Fractal geometry: mathematical foundations and applications, Wiley, New York, 1990.

32. Vicsek, T., Fractal growth phenomena, 2nd ed., World Scientific, NJ, 1992.

33. Li, X., and Logan, B.E., Size distributions and fractal properties of particles during a simulated phytoplankton bloom in a mesocosm. Deep Sea Res. II, 42, 125, 1995.

34. Jackson, G.A., et al., Combining particle size spectra from a mesocosm experiment measured using photographic and aperture impedance (Coulter and Elzone) techniques. Deep Sea Res. II, 42, 139, 1995.

35. Jackson, G.A., et al. Particle size spectra between 1 /m and 1 cm at Monterey Bay determined using multiple instruments. Deep Sea Res. I, 44, 1739, 1997.

36. Klips, J.R., Logan, B.E., and Alldredge, A.L., Fractal dimensions of marine snow determined from image analysis of in situ photographs. Deep Sea Res. 41, 1159, 1994.

Pruppacher, H.R., and Klett, J.D., Microphysics of clouds and precipitation, Reidel, Boston, MA, 1980.

Adler, P.M., Streamlines in and around porous particles. J. Colloid Interface Sci. 81, 531, 1981.

Han, M., and Lawler, D.F., The (relative) insignificance of G in flocculation. J. Am. Water Works Assoc. 84, 79, 1992.

Jackson, G.A., and Lochmann, S.E., Modeling coagulation in marine ecosystems, in Environmental particles, volume 2, Buffle, J., and van Leeuwen, H.P., Eds., Lewis Publishers, Boca Raton, FL, p. 387, 1993.

Gelbard, F., Tambour, Y., and Seinfeld, J.H., Sectional representations for simulating aerosol dynamics. J. Colloid Interface Sci. 76, 541, 1980.

Li, X., and Logan, B.E., Collision frequencies of fractal particles with small particles by differential sedimentation. Environ. Sci. Technol. 31, 1229, 1997.

Li, X., and Logan, B.E., Collision frequencies of fractal aggregates and small particles in a turbulently sheared fluid. Environ. Sci. Technol. 31, 1237, 1997.

Jackson, G.A., Effect of coagulation on a model planktonic food web. Deep Sea Res.

Jackson, G.A., Using fractal scaling and two dimensional particle size spectra to calculate coagulation rates for heterogeneous systems. J. Colloid Interface Sci. 202, 20, 1998.

Ki0rboe, T. Anderson, K., and Dam, H., Coagulation efficiency and aggregate formation in marine phytoplankton. Mar. Biol. 107, 235, 1990.

Jackson, G.A., Comparing observed changes in particle size spectra with those predicted using coagulation theory. Deep Sea Res. II 42, 159, 1995.

Alldredge, A.L., et al., The physical strength of marine show and its implications for particle disaggregation in the ocean. Limnol. Oceanogr. 35, 1415, 1990.

Al-Ani, S., Dyer, K.R., and Huntley, D.A., Measurement of the influence of salinity on floc density and strength. Geo-Marine Lett., 11, 154, 1991.

Ki0rboe, T.P. et al., Aggregation and sedimentation processes during a spring phytoplankton bloom: a field experiment to test coagulation theory. J. Mar. Res. 52, 297, 1994.

Riebesell, U., Particle aggregation during a diatom bloom. I. Physical aspects. Mar. Ecol. Prog. Ser. 69, 273, 1991.

Riebesell, U., Particle aggregation during a diatom bloom. II. Biological aspects. Mar. Ecol. Prog. Ser. 69, 281, 1991.

Olesen, M., Sedimentation in Mariager Fjord, Denmark: the impact of sinking velocity on system productivity. Ophelia 55, 11, 2001.

Prieto, L. et al., Scales and processes in the aggregation of diatom blooms: high time resolution and wide size range records in amesocosm study. Deep Sea Res. I, 49, 1233, 2002.

Boyd, P.W., Jackson, G.A., and Waite, A.M., Are mesoscale perturbation experiments in polar waters prone to physical artefacts? Evidence from algal aggregation modelling studies. Geophys. Res. Let. 29, 10.1029/2001GL014210, 2002. Camp, T.R., and Stein, P.C., Velocity gradients and internal work in fluid motion. J. Boston Soc. Civil Engrs. 30, 219, 1943.

Birkner, F.B., and Morgan, J.J., Polymer flocculation kinetics of dilute colloidal suspensions. J. Am. Water Works Assoc. 60, 175, 1968.

Engel, A., The role of transparent exopolymer particles (TEP) in the increase in apparent particle stickiness (a) during the decline of a diatom bloom. J. Plankton Res. 22, 485, 2000.

59. Burd, A.B., and Jackson, G.A., Modeling steady state particle size spectra. Environ. Sci. Technol. 36, 323, 2002.

60. Riebesell, U., and Wolf-Gladrow, D.F., The relationship between physical aggregation of phytoplankton and particle flux: a numerical model. Deep Sea Res. 39, 1085, 1992.

61. Ackleh, A.S., and Fitzpatrick, B.G., Modeling aggregation and growth processes in an algal population model: analysis and computations. J. Math. Biol. 35, 480, 1997.

62. Ruiz, J., What generates daily cycles of marine snow? Deep Sea Res. I, 44, 1105, 1997.

63. Mari, X., and Burd, A., Seasonal size spectra of transparent exopolymeric particles (TEP) in a coastal sea and comparison with those predicted using coagulation theory. Mar. Ecol. Prog. Ser. 163, 63, 1998.

64. Boehm, A.B., and Grant, S.B., Influence of coagulation, sedimentation, grazing by zooplankton on phytoplankton aggregate distributions in aquatic systems. J. Geophys. Res. 103, 15601, 1998.

65. Kriest, I., and Evans, G., Representing phytoplankton aggregates in biogeochemical models. Deep Sea Res. I 46, 1841, 1999.

66. Ackleh, A.S., and Forward, R.R., A nonlinear phytoplankton aggregation model with light shading. SIAM J. Appl. Math. 60, 316, 1999.

67. Dadou, I. et al., An integrated biological pump model form the euphotic zone to the sediment: a 1-D application in the Northeast tropical Atlantic. Deep Sea Res. II, 48, 2345, 2001.

68. Kriest, I., Differentparameterizationsofmarinesnowina 1D-model and their influence on representation of marine snow, nitrogen budget and sedimentation. Deep Sea Res. I, 49, 2133, 2002.

69. Ruiz, J., Prieto, L., and Ortegon, F., Diatom aggregate formation and fluxes: a modeling analysis under different size-resolution schemes and with empirically determined aggregation kernels. Deep Sea Res. I, 49, 495, 2002.

70. Stemmann, L., Jackson, G.A., and Ianson, D., A vertical model of particle size distributions and fluxes in the midwater column that includes biological and physical processes. I. Model formulation. Deep Sea Res. I, 51, 865, 2004.

71. Stemmann, L., Jackson, G.A., and Gorsky, G., A vertical model of particle size distributions and fluxes in the midwater column that includes biological and physical processes. II. Application to a three year survey in the NW Mediterranean Sea. Deep Sea Res. I, 51, 885, 2004.

72. Farley, K.J., and Morel, F.M.M., Role of coagulation in the kinetics of sedimentation. Environ. Sci. Technol. 20, 187, 1986.

73. Burd, A., and Jackson, G.A., The evolution of particle size spectra. I: pulsed input. J. Geophys. Res. 102, 10545, 1997.

74. Hill, P.S., Sectional and discrete representations of floc breakage in agitated suspensions. Deep Sea Res. I, 43, 679, 1996.

75. Dilling, L., and Alldredge, A.L., Fragmentation of marine snow by swimming macro-zooplankton: a new process impacting carbon cycling in the sea. Deep Sea Res. I, 47, 1227, 2000.

76. Alldredge, A.L., Passow, U., and Logan, B.E., The abundance and significance of a class of large, transparent organic particles in the ocean. Deep SeaRes. 40, 1131, 1993.

77. Passow, U., Transparent exopolymer particles (TEP) in aquatic environments. Prog. Oceanogr. 55, 287, 2002.

78. Logan, B.E., et al., Rapid formation and sedimentation of large aggregates is predictable from coagulation rates (half-lives) of transparent exopolymer particles (TEP). Deep Sea Res. II, 42, 203, 1995.

79. Ki0rboe, T.P., and Hansen, J.L.S., Phytoplankton aggregate formation: observations of patterns and mechanisms of cell sticking and the significance of exopolymeric material. J. Plankton Res. 15, 993, 1993.

0 0

Post a comment