1. Li, D.-H. and Ganczarczyk, J.J. 1986. Physical characteristics of activated sludge flocs. CRC Crit. Rev. in Environ. Contr. 17: 53-87.

2. Syvitski, J.P.M. 1991. Principles, Methods, and Applications of Particle Size Analysis. Cambridge University Press, Melbourne, Australia.

3. Eisma, D., Bale, A.J., Dearnaley, M.P., Fennessey, M.J., Van Leussen, W., Maldiney, M.A., Pfieffer, A., and Wells, J.T. 1996. Intercomparison of in situ suspended matter (floc) size measurements. J. Sea Res. 36: 3-14.

4. Dyer, K.R., Cornelisse, J., Dearnlaley, M.P., Fennessey, M.J., Jones, S.E., Kappenberg, J., McCane, I.N., Perjrup, M., Puls, W., Van Leusse, W., and Wolfstein, K. 1996. A comparison of in situ techniques for estuarine floc settling velocity measurements. J. Sea Res. 36: 15-29.

5. Bitton, G. (ed.). 2002. The Encyclopaedia of Environmental Microbiology. Volumes 1-6, John Wiley and Sons, New York.

6. Liss, S.N. 2002. Microbial flocs suspended biofilms in The Encyclopaedia of Environmental Microbiology. G. Bitton (ed.). Volume 4, John Wiley and Sons, New York, pp. 2000-2012.

7. Droppo, I.G. 2001. Rethinking what constitutes suspended sediment. Hydrol. Proc. 15: 1551-1564.

8. Li, D.-H. and Ganczarczyk, J.J. 1993. Factors affecting dispersion of activated sludge flocs. Water Environ. Res. 65: 258-263.

9. Bruss, J.H., Nielsen, P.H., and Keiding, K. 1992. On the stability of activated sludge flocs with implications to dewatering. Water Res. 26(12): 1597-1604.

10. Mikkelsen, L.H., Gotfredsen, A.K., Agerb®k, M.A., Nielsen, P.H., and Keiding, K. 1996. Effects of colloidal stability on clarification and dewatering of activated sludge. Water Sci. Technol. 34: 449-457.

11. Bache, D.H., Hossain, M.D., Al-Ani, S.H., and Jackson, P.J. 1991. Optimum coagulation conditions for a colored water in terms of floc size, density and strength. Water Supply. 29: 93-102.

12. Droppo, I.G. and Ongley, E.D. 1992. The state of suspended sediment in the freshwater fluvial environment: A method of analysis. Water Res. 26: 65-72.

13. Milligan, T.G. 1996. In situ particle (floc) size measurements with the Benthos 373 plankton silhouette camera, J. Sea Res. 36(1-2): 93-100.

14. Barbusinski, K. and Koscielniak, H. 1995. Influence of substrate loading intensity on floc size in sludge process. Water Res. 29: 1703-1710.

15. Li, D.-H. and Ganczarczyk, J.J. 1988. Flow through activated sludge flocs. Water Res. 22: 789-792.

16. Hill, P.S., Milligan, T.G., and Geyer, W.R. 2000. Controls on effective settling velocity in the Eel River flood plume. Cont. Shelf Res. 20: 2095-2111.

17. Fox, J.M., Hill, P.S., Milligan, T.G., and Boldrin, A. 2004. Flocculation and sedimentation on the Po River delta. Mar. Geol. 203: 95-107.

18. Glasgow, L.A. 1989. Effects of the physiochemical environment on floc properties. Chem. Eng. Prog. Aug: 51-55.

19. Logan, B.E. and Wilkinson, D.B. 1991. Fractal dimensions and porosities of Zooglea ramigera and Saccharomyces cerevisiae aggregates. Biotech. Bioeng. 38: 389-396.

20. Namer, J. and Ganczarczyk, J.J. 1994. Fractal dimension and shape factors of digested sludge particle aggregates. Water Poll. Res. J. Can. 29: 441-455.

21. Thill, A., Veerapaneni, S., Simon, B., Weisner, M., Bottero, J.Y., and Snidaro, D. 1998. Determination of structure of aggregates by confocal scanning laser microscopy. J. Colloid Interface Sci. 204: 347-362.

22. Thill, A., Wagner, M., andBottero, J.Y. 1999. Confocal scanning laser microscopy as a tool for the determination of 3D floc structure. J. Colloid Interface Sci. 220: 465-467.

23. Schmid, M., Thill, A., Purkhold, U., Walcher, M., Bottero, J.Y., Gineset, P., Nielsen, P.H., Weurtz, S., and Wagner, M. 2003. Characterization of activated sludge flocs by confocal laser scanning microscopy and image analysis. Water Res. 37: 2043-2052.

24. Alldredge, A.L. and Silver, M.W. 1988. Characteristics, dynamics and significance of marine snow. Prog. Oceanogr. 20: 41-82.

25. Heissenberger, A., Leppard, G.G., and Herndl, G.J. 1996. Relationship between the intracellular integrity and the morphology of the capsular envelope in attached and free-living marine bacteria. Appl. Environ. Microbiol. 62: 4521-4528.

26. Heissenberger, A., Leppard, G.G., and Herndl, G.J. 1996. Ultrastructure of marine snow II. Microbiological considerations. Mar. Ecol. Prog. Ser. 135: 299-308.

27. Leppard, G.G., Heissenberger, A., and Herndl, G.J. 1996. Ultrastructure of marine snow. I. Transmission electron microscopy methodology. Mar. Ecol. Prog. Ser. 135: 289-298.

28. Gibbs, R.J. 1982. Floc stability during Coulter counter sizer analysis. J. Sedimen. Petrol. 52: 657-660.

29. Milligan, T.G. and Kranck, K. 1991. Electro-resistance particle size analysers in Theory, Methods and Applications of Particle Size Analysis. J.P. Syvitski (ed.), Cambridge University Press, New York, 109-118.

Glasgow, L.A., Pollock, R.J., and Barkley, W.A. 1983. Particle size reduction by breakage in biological wastewater treatment. Biotech. Bioeng. 25: 901-918.

Li, D.H. and Ganczarczyk, J.J. 1986. Application of image analysis system for activated sludge flocs. Water Poll. Res. J. Canada 21: 130-140.

Sezgin, M., Jenkins, D., and Parker, D.S. 1978. A unified theory of filamentous activated sludge bulking. J. Water Pollu. Control Fed. 50(2): 362-381.

Pipes, W.O. 1979. Bulking, deflocculation and pinpoint floc. J. Water Pollut. Control

Magara, Y., Nambu, S., and Utowsa, K. 1976. Biochemical and physical properties of activated sludge on settling characteristics. Water Res. 10: 71-77. Tambo, N. and Watanabe, Y. 1979. Physical characteristics of floc I — the focal density function and aluminum floc. Water Res. 13: 409-419.

Eisma, D. and Kalf, J. 1996. In situ particle (floc) size measurement with the NIOZ in situ camera system. J. Sea Res. 36(1-2): 49-53.

Eisma, D., Schuhmacher, T., Boekel, H., van Heerwaarden, J., Franken, H., Laan, M., Vaars, A., Eijgenraam, F., and Kalf, J. 1996. A camera and image-analysis system for in situ observation of flocs in natural waters. Netherlands J. Sea Res. 27: 43-56. Russ, J.C. 1994. The Image Processing Handbook, 2nd Ed. CRC Press, Boca Raton, FL.

Fennessy, M.J., Dyer, K.R., Huntley, D.A., and Bale, A.J. 1997. Estimation of settling flux spectra in estuaries using INSSEV, in Cohesive Sediments, N. Burt, R. Parker and J. Watts, (eds.), John Wiley & Sons, pp. 87-104.

Van der Lee, W.T.B. 2000. Temporal variation of floc size and settling velocity in the Dollard estuary. Cont. Shelf Res. 20: 1495-1511.

Phillips, J.M. and Walling, D.E. 1995. An assessment of the effects of sample collection, storage and resuspension on the representativeness of measurements of the effective particle size distribution of fluvial suspended sediments. Water Res. 29: 2498-2508.

Agrawal, Y.C. and Pottsmith, H.C. 2000. Instruments for particle size and settling velocity observations in sediment transport. Mar. Geol. 168: 89-114.

Bale, A.J. and Morris, A.W. 1987. In situ measurement of particle size in estuarine waters. Estuar. Coast. Shelf Sci. 24: 253-263.

Owen, M.W. 1976. Determination of the settling velocities of cohesive muds. Report No IT 161. Hydraulics Research Station Wallingford, UK.

Matthews, M.D. 1991. The effect of pre-treatment on size analysis in Principles, Methods and Application of Particle Size Analysis, J.P.M. Syvitski (ed.), Cambridge University Press.

Phillips, J.M. and Walling, D.E. 1998. Calibration of a Par-Tec 200 laser back-scatter probe for in situ sizing of fluvial suspended sediment. Hydrological Proc. 12: 221-231. Gibbs, R.J. and Konwar, L. 1983. Disruption of mineral flocs using Niskin bottles. Environ. Sci. Technol. 17: 374-375.

Gibbs, R.J. and Konwar, L. 1982. Effects of pipetting on mineral flocs. Environ. Sci. Technol. 16: 119-121.

Droppo, I.G., Flannigan, D.T., Leppard, G.G., Jaskot, C., and Liss, S.N. 1996. Floc stabilization for multiple microscopic techniques. Appl. Environ. Microbiol. 62: 3508-3515.

50. Droppo, I.G., Flannigan, D.T., Leppard, G.G., and Liss, S.N. 1996. Microbial floc stabilization and preparation for structural analysis by correlative microscopy. Water Sci. Technol. 34: 155-162.

51. Ganczarczyk, J.J., Zahid, W.M., and Li, D.H. 1992. Physical stabilization and embedding of microbial aggregates for light microscopy studies. Water Res. 26: 1695-1699.

52. Mikkelsen, O.A., Milligan, T.G., Hill, P.S., and Moffat, D. 2004. INSSECT-An instrumented platform for investigating floc properties close to the boundary layer. Limnol. Oceanogr. Methods 2: 226-236.

53. Li, D.H. and Ganczarczyk, J.J. 1987. Stroboscopic determination of settling velocity, size, porosity of activated sludge flocs. Water Res. 21: 257-262.

54. Zahid, W.M. and Ganczarczyk, J.J. 1990. Suspended solids in biological filter effluents. Water Res. 24: 215-220.

55. Namer, J. and Ganczarczyk, J.J. 1993. Settling properties of digested sludge particle aggregates. Water Res. 27: 1285-1294.

56. Lee, D.J., Chen, G.W., Liao, C.Y., and Hsieh, C.C. 1996. On the free-settling test for estimating activated sludge floc density. Water Res. 30: 541-550.

57. Droppo, I.G., Leppard, G.G., Flannigan, D.T., and Liss, S.N. 1997. The freshwater floc: A functional relationship of water and organic and inorganic floc constituents affecting suspended sediment properties. Water Air Soil Pollut. 99: 43-54.

58. Lerman, A. 1979. Geochemical Processes: Water and Sediment Environment, Wiley, New York.

59. Ozturgut, E.O. and Lavelle, J.W. 1984. A new method for wet density and settling velocity determination for a waste water effluent. Environ. Sci. Technol. 18: 947-952.

60. Klimpel, R.C., Dirican, C., and Hogg, R. 1986. Measurement of agglomerate density in flocculated fine particle suspensions. Particulate Sci. Technol. 4: 45-59.

61. Liss, S.N., Droppo, I.G., Flannigan, D.T., and Leppard, G.G. 1996. Floc architecture in wastewater and natural riverine systems. Environ. Sci. Technol. 30: 680-686.

62. Fennessy, M.J., Dyer, K.R., and Huntley, D.A. 1994. INSSEV: An instrument to measure the size and settling velocity of flocs in situ. Mar. Geol. 117: 107-117.

63. Sternberg, R.W., Berhane, I., andOgston, A.S. 1999. Measurement of size and settling velocity of suspended aggregates on the northern California continental shelf. Mar. Geol. 154: 43-53.

64. Ganczarczyk, J.J. 1994. Microbial aggregates in wastewater treatment. Water Sci. Technol. 30: 87-95.

65. Glasgow, L.A. and Hsu, J.-P. 1984. Floc characteristics in water and wastewater treatment. Particulate Sci. Technol. 2: 285-303.

66. Andreadakis, A.D. 1993. Physical and chemical properties of activated sludge flocs. Water Res. 27(12): 1707-1714.

67. Lagvankar, A.L. and Gemmell, R.S. 1968. A size-density relationship in flocs. J. AWWA. 60: 1050-1056.

68. Dammel, E.E. and Schroeder, E.D. 1991. Density of activated sludge solids. Water Res. 25: 841-846.

69. Mikkelsen, O.A. and Perjrup, M. 2001. The use of a LISST-100 laser particle sizer for in-situ estimates of floc size, density and settling velocity. Geo-Mar. Lett. 29: 187-195.

70. Leppard, G.G. 1992. Evaluation of electron microscope techniques for the description of aquatic colloids in Environmental Particles. Vol. 1, Lewis Publishers, Boca Raton, FL, pp. 231-289.

Chao, A.C. and Keinath, T.M. 1979. Influence of process loading intensity on sludge clarification and thickening characteristics. Water Res. 13: 1213-1221. Jorand, F., Zartarian, F., Thomas, F., Block, J.C., Bottero, J.Y., Villemin, G., Urbain, V., and Manem, J. 1995. Chemical and structural (2D) linkage between bacteria within activated sludge flocs. Water Res. 29(7): 1639-1647.

Leppard, G.G. 1986. The fibrillar matrix component of lacustrine biofilms. Water Res. 20: 697-702.

Leppard, G.G. 1993. Organic Flocs in surface waters: Their native state and aggregation behavior in relation to contaminant dispersion in Particulate Matter and Aquatic Contaminants, S.S. Rao (ed.). Lewis Publishers, Boca Raton, fl, pp. 169-195. Zartarian, F., Mustin, C., Bottero, J.Y., Villemin, G., Thomas, F., Ailleres, L., Champerois, M., Grulois, P., and Manem, J. 1994. Spatial arrangement of components of activated sludge flocs. Water Sci. Technol. 30: 243-250.

Leppard, G.G., Droppo, I.G., West, M.M., andLiss, S.N. 2003. Compartmentalization of metals within the diverse colloidal matrices comprising activated sludge microbial flocs. J. Environ. Qual. 32: 2100-2108.

Decho, A.W. and Kawaguchi, T. 1999. Confocal imaging of in situ natural micro-bial communities and their extracellular polymeric secretions using Nanoplast resin. Biotechniques, 27(6): 1246-1252.

Caldwell, D.E., Korber, D.R., and Lawrence, J.R. 1992. Imaging of bacterial cells by fluorescence exclusion using scanning confocal laser microscopy. J. Microbiol. Meth. 15: 249-261.

Holloway, C.F. and Cowen, J.P. 1997. Development of scanning confocal laser microscopic technique to examine the structure and composition of marine snow. Limnol. Oceanogr. 42: 1340-1352.

Schuster, K.C., Reese, I., Urlaub, E., Gapes, J.R., and Lendl, B. 2000a. Multidimensional information on the chemical composition of single bacterial cells by Confocal Raman Microspectroscopy. Anal. Chem. 72(22): 5529-5534.

Schuster, K.C., Urlaub, E., and Gapes, J.R. 2000b. Single-cell analysis of bacteria by Raman Microscopy: Spectral information of the chemical composition of cells and on the heterogeneity in a culture. J. Microbiol. Meth. 42: 29-38.

Burks, G.A., Velegol, S.B., Paramanova, E., Lindenmuth, B.E., Feick, J.D., and Logan, B.E. 2003. Macroscopic and nanoscale measurements of the adhesion of bacteria with varying outer layer surface composition. Langmuir 19(6): 2366-2371. Velegol, S.B., Pardi, S., Li, X., Velegol, D., and Logan, B.E. 2003. AFM imaging artifacts due to bacterial cell height and AFM tip geometry. Langmuir 19: 851-857. Lawrence, J.R., Swerhorne, G.D.W., Leppard, G.G., Araki, T., Zhang, X., West, M.M., and Hitchcock, A.P. 2003. Scanning transmission X-ray, laser scanning, and transmission electron microscopy mapping of the exopolymeric matrix of microbial biofilms. Appl. Environ. Microbiol. 69: 5543-5554.

Decho, A.W. 1990. Microbial exopolymer secretions in ocean environments: Their roles in food webs and marine processes. Oceanogr. Mar. Biol. Annu. Rev. 28: 73-153. Wilen, B.-M., Jin, B., and Lant, P. 2003. The influence of key chemical constituents in activated sludge on surface and flocculating properties. Water Res. 37: 2127-2139. Gehr, R. and Henry, J.G. 1983. Removal of extracellular materials: Techniques and pitfalls. Water Res. 17(12): 1743-1748.

Spaeth, R. and Wuertz, S. 2000. Extraction and quantification of extracellular polymeric substances from wastewater in Biofilms: Investigative Methods and Applications. H-C. Flemming, U. Szewzyk, and T. Griebe (eds.). Technomic Publishing Company Inc., Lancaster, Pennsylvania, pp. 51-68.

89. Brown, M.J. and Lester, J.N. 1980. Comparison of bacterial extracellular polymer extraction methods. Appl. Environ. Microbiol. 40: 179-185.

90. Liu, Y. and Fang, H.P. 2003. Influences of extracellular polymeric substances (EPS) on flocculation, settling and dewatering of activated sludge. CRC Crit. Rev. Environ. Sci. Technol. 33(3): 237-273.

91. Rudd, T., Sterritt, R.M., and Lester, J.N. 1983. Extraction of extracellular polymers from activated sludge. Biotechnol. Lett. 5(5): 327-332.

92. Fr0lund, B., Palmgren, R., Keiding, K., and Nielsen, P.H. 1996. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res. 30(8): 1749-1758.

93. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. 1951. Protein Measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275.

94. Gaudy, A.F. 1962. Colorimetric determination of protein and carbohydrate. Industrial Water and Wastes. Jan-Feb: 17-22.

95. Filisetti-Cozzi, T.M. and Carpita, N.C. 1991. Measurement of uronic acids without interference from neutral sugars. Anal. Biochem. 197: 159-162.

96. Del Gallo, M., Negi, M., and Neyra, C.A. 1989. Calcofluor- and lectin-binding exo-cellular polysaccharides of Azospirillum brasilense and Azospirillum lipoferum. J. Bacteriol. 171: 3504-3510.

97. Stewart, P.S., Murga, R., Srinivasan, R., and de Beer, D. 1995. Biofilm structural heterogeneity visualized by three microscopic methods. Water Res. 29: 2006-2009.

98. Allison, D.G. and Sutherland, I.W. 1984. A staining technique for attached bacteria and its correlation to extracellular carbohydrates production. J. Microbiol. Meth. 2: 93-99.

99. Michael, T. and Smith, C.M. 1995. Lectins probe molecular films in biofouling: characterization of early films on non-living and living surfaces. Mar. Ecol. Prog. Ser. 119(1-3): 229-236.

100. Lawrence, J.R., Neu, T.R., and Swerhone, G.D.W. 1998. Application of multiple parameter imaging for the quantification of algal, bacterial and exopolymer components of microbial biofilms. J. Microbl. Meth. 32: 253-261.

101. Wolfaardt, G.M., Lawrence, J.R., Robarts, R.D., and Caldwell, D.E. 1998. In situ characterization of biofilm exopolymers involved in the accumulation of chlorinated organics. Microbial Ecol. 35: 213-223.

102. Johnsen, A.R., Hausner, M., Schnell, A., and Wuertz, S. 2000. Evaluation of fluores-cently labeled lectins for noninvasive localization of extracellular polymeric substances in Sphingomonas biofilms. Appl. Environ. Microbiol. 66(8): 3487-3491.

103. Sharon, N. and Lis, H. 1989. Lectins. Chapman and Hall, New York, pp. 1-127.

104. Neu, T.R. and Marshall, K.C. 1991. Microbial 'footprints' — A new approach to adhesive polymers. Biofouling 3: 101-112.

105. Morgan, J.W., Forster, C.F., and Evison, L. 1900. A comparative study of the nature of biopolymers extracted from anaerobic and activated sludges. Water Res. 24: 743-50.

106. Liao, B., Allen, D.G., Droppo, I.G., Leppard, G.G., and Liss, S.N. 2001. Surface properties of activated sludge and their role in bioflocculation and settling. Water Res. 35: 339-350.

107. Mikkelsen, L.H. 2003. Applications and limitations of the colloid titration method for measuring activated sludge surface charges. Water Res. 37: 2458-2466.

108. Rosenberg, M., Gutnick, D., and Rosenberg, E. 1980. Adherence of bacteria to hydrocarbons: A simple method for measuring cell surface hydrophobicity. FEMSMicrobiol. Lett. 9: 29-33.

Rosenberg, M. and Doyle, R.J. 1990. Microbial cell surface hydrophobicity: history, measurement and significance in Microbial Cell Surface Hydrophobicity, R.J. Doyle and M. Rosenberg (ed.). Chapter 1, American Society for Microbiology, Washington, D.C., pp. 1-29.

Duncan-Hewitt, W.C., Policova, Z., Cheng, P., Vargha-Butler, E.I., and Neumann, A.W. 1989. Semiautomatic measurement of contact angles on cell layers by a modified axisymmetric drop shape analysis. Colloids Surf. 42: 391-403. Neumann, A.W., Li, D., Spelt, G., and Cheng, P. 1996. Applied Surface Thermodynamics. Marcel Dekker, Inc. New York.

Lindahl, M., Fairs, A., Wadstrom, T., and Hjerten, S. 1981. A new test based on "salting out" to measure relative surface hydrophobicity of bacterial cells. Biochem. Biophys. Acta. 677: 471-476.

Rozgoni, F., Szitha, K.R., Ljungh, A., Baloda, S.B., Hjerten, F., and Wadstrom, T. 1985. Improvement of the salt aggregation test to study bacterial cell-surface hydrophobicity. FEMS Microbiol. Lett. 30: 131-138.

Urbain, V., Block, J.C., and Manem, J. 1993. Bioflocculation in activated sludge: An analytic approach. Water Res. 27(5): 829-838.

Wagner, M., Amann, R., Lemmer, H., and Schleifer, K. 1993. Probing activated sludge with oligonucleotides specific for proteobacteria: Inadequacy of culture-dependent methods for describing microbial community structures. Appl. Environ. Microbiol. 59: 1520-1525.

Wagner, M., Amann, R., Kampfer, P., Assmus, B., Hartmann, A., Hutzler, P., Springer, N., and Schleifer, K. 1994a. Identification and in situ detection of Gram-negative filamentous bacteria in activated sludge. Syst. Appl. Microbiol. 17: 405-417. Wagner, M., Erhart, R., Manz, W., Amann, R., Lemmer, H., Wedi, D., and Schleifer, K. 1994b. Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge. Appl. Environ. Microbiol. 60: 792-800.

Mobarry, B.K., Wagner, M., Urbain, V., Rittman, B., and Stahl, D.A. 1996. Phylogen-etic probes for analyzing the abundance and spatial organization of nitrifying bacteria. Appl. Environ. Microbiol. 62: 2156-2162.

Wagner, M., Rath, G., Koops, H.-P., Flood, J., and Amann, R. 1996. In situ analysis of nitrifying bacteria in sewage treatment plants. Water Sci. Technol. 34(1-2): 237-244.

Wagner, M., Rath, G., Amann, R., Koops, H., and Schleifer, K. 1995. In situ identification of ammonia-oxidizing bacteria. Syst. Appl. Microbiol. 18: 251-264.

Wagner, M., Noguera, D.R., Juretschko, S., Rath, G., Koops, H., and Schleifer, K. 1997. Combining fluorescent in situ hybridization (FISH) with cultivation and mathematical modelling to study population structure and function of ammonia-oxidizing bacteria in activated sludge in Proceedings 2nd International Conference on Microorganisms in Activated Sludge and Biofilm Processes, Berkeley, California, pp. 273-281.

Grossart, H.-P. and Simon, M. 1998. Bacterial colonization and microbial decomposition of limnetic organic aggregates (lake snow). Aquat. Microb. Ecol. 15: 127-140.

Simon, M., Grossart, H.-P., Schweitzer, B., and Ploug, H. 2002. Microbial ecology of organic aggregates in aquatic ecosystems. Aquat. Microb. Ecol. 28: 175-211.

124. Victorio, L., Gilbride, K.A., Allen, D.G., and Liss, S.N. 1996. Phenotypic fingerprinting of microbial communities in wastewater treatment systems. Water Res. 30: 1077-1086.

125. Brock, T.D. and Brock, M.L. 1966. Autoradiography as a tool in microbial ecology. Nature 209: 734-736.

126. Brock, T.D. 1967. Bacterial growth rates in the sea: direct analysis by thymidine autoradiography. Science 155: 81-83.

127. Juniper, S.K. 1981. Stimulation of bacterial activity by a deposit feeder in two New Zealand intertidal inlets. Bull. Mar. Sci. 3: 691-701.

128. Carman, K.R. 1990. Radioactive labeling of a natural assemblage of marine sedimentary bacteria and microalgae for trophic studies: An autoradiographic study. Microbial Ecol. 19: 279-290.

129. Gray, N.D., Howarth, R., Pickup, R.W., Gwyn Jones, J., and Head, I.M. 1999. Substrate uptake by uncultured bacteria from the genus Achromatium determined by microautoradiography. Appl. Environ. Microbiol. 65: 5100-5106.

130. Lee, N., Nielsen, P., Andreasen, K., Juretschko, S., Nielsen, J., Schleifer, K., and Wagner, M. 1999. Combination of fluorescent in situ hybridization and microautoradiography — a new tool for structure-function analyses in microbial ecology. Appl. Environ. Microbiol. 65: 1289-1297.

131. Nielsen, P.H., Andreasen, K., Lee, N., and Wagner, M. 1999. Use of microautoradio-graphy and fluorescent in situ hybridization for characterization of microbial activity in activated sludge. Water Sci. Technol. 39: 1-9.

132. Nielsen, P.H., Andreasen, K., Lee, N., Wagner, M., Blackall, L.L., Lemmer, H., and Seviour, R.J. 1998. Variability of Type 021N in activated sludge as determined by in situ substrate uptake pattern and in situ hybridization with fluorescent rRNA targeted probes. Water Sci. Technol. 37: 423-430.

133. Andreasen, K. and Nielsen, P.H. 2000. Growth of Microthrix parvicella in nutrient removal activated sludge plants: studies of in situ physiology. Water Res. 34: 1559-1569.

134. Ouverney, C.C. and Fuhrman, J.A. 1999. Combined microautoradiography-16S rRNA probe technique for determination of radioisotope uptake by specific microbial cell types in situ. Appl. Environ. Microbiol. 65: 1746-1752.

135. Thomsen, T.R., Kjellerup, B.V., Nielsen, J.L., Hugenholtz, P., and Nielsen, P.H. 2002. In situ studies of the phylogeny and physiology of filamentous bacteria with attached growth. Environ. Microbiol. 4(7): 383-391.

136. Zarda, B., Hahn, D., Chatzinotas, A., Schonhuber, W., Neef, A., Amann, R., andZeyer, J. 1997. Analysis of bacterial community structure in bulk soil by in situ hybridization. Arch. Microbiol. 168: 185-192.

137. Davenport, R.J., Curtis, T.P., Goodfellow, M., Stainsby, F.M., and Bingley, M. 2000. Quantitative use of fluorescent in situ hybridization to examine relationships between mycolic acid-containing Actinomycetes and foaming in activated sludge plants. Appl. Environ. Microbiol. 66: 1158-1166.

0 0

Post a comment