Longobardi G. Batch Fermentation Bakers Yeast . Bioprocess Engineering

1. Ross, R.P., S. Morgan, C. Hill. Preservation and fermentation: past, present and future. Intl. J. Food Microbiol. 79:3-16, 2002.

2. Hulse, J.H. Biotechnologies: past history, present state and future prospects. Trends Food Sci. Technol. 15:3-18, 2004.

3. Linko, Y.Y., P. Javanainen, S. Linko. Biotechnology of bread baking. Trends Food Sci. Technol. 8:339-344, 1997.

4. Linko, M., A. Haikara, A. Ritala, M. Penttila. Recent advances in the malting and brewing industry. J. Biotechnol. 65:85-98, 1998.

5. Holzapfel, W.H. Appropriate starter culture technologies for small-scale fermentation in developing countries. Int. J. Food Microbiol. 75:197-212, 2002.

6. Gervais, P., P. Molin. The role of water in solid-state fermentation. Biochem. Eng. J. 13:85101, 2003.

7. Ooijkaas, L.P., F.J. Weber, R.M. Buitelaar, J. Tramper, A. Rinzema. Defined media and inert supports: their potential as solid-state fermentation production systems. Trends Biotechnol. 18:356-360, 2000.

8. Verschoor, H. Developments in bioreactors. Chem. Eng. 415:39-41, 1985.

9. Cliffe, K. Bioreactors. In: Biotechnology for engineers: Biological systems in technological processes, Scragg, A.H., ed., New York: Ellis Horwood, Ltd., 1988, pp 277-301.

Kilonzo, P.M., A. Margaritis. The effects of non-Newtonian fermentation broth viscosity and small bubble segregation on oxygen mass transfer in gas-lift bioreactors: a critical review. Biochem. Eng. J. 17:27-40, 2004.

Fu, C.C., W.T. Wu, S.Y. Lu. Performance of airlift bioreactors with net draft tube. Enz. Microb. Technol. 33:332-342, 2003.

Zannetti, R. Breathing new life into single-cell protein. Chem. Eng. 91:18,1984. Nedovic, V.A., B. Obradovic, I. Leskosek-Cukalovic, G. Vunjak-Novakovic. Immobilized yeast bioreactor systems for brewing: recent achievements. In: Engineering and Manufacturing for Biotechnology, Vol. 4, Hofman, M., P. Thonart, eds., Belgium: Kluwer Academic,1993, pp 277-292.

Nedovic, V.A., I. Leskosek-Cukalovic, G. Vunjak-Novakovic. Short-time fermentation of beer in an immobilized yeast air-lift bioreactor. In: Proc. 24th Conv. Inst. Brew., Harvey, J. ed., Adelaide: Singapore Winetitles, 1996, pp 245-250.

Mensour, N., A. Margaritis, C.L. Briens, H. Pilkington, I. Russel. Application of immobilized yeast cells in the brewing industry. In: Immobilized Cells: Basics and Applications. Wijffels, R.H., R.M. Buitelaar, C. Bucke, J. Tramper, eds., Amsterdam: Elsevier, 1996, pp 661-667.

Park, Y.S., M. Itida, N. Ohta, M. Okabe. Itaconic acid production using an air-lift bioreactor in repeated batch culture of Aspergillus terreus. J. Ferment. Bioeng. 77:329-331, 1994. Kahar, P., K. Kobayashi, T. Iwata, J. Hiraki, M. Kojima, M. Okabe Production of ^-polyly-sine in an airlift bioreactor (abr). J. Biosci. Bioeng. 93:274-280, 2002. Margaritis, A., D. te Bokkel, M.E. Kashab. Pilot plant production of ethanol using immobilized yeast cells in a novel fluidized bioreactor system. 18th ACS Meeting, Washington, DC, 1983. Shindo, S., H. Sahara, N. Watanabe, S. Koshino. Main fermentations with immobilized yeast using fluidized-bed reactor. In: Proc. 23rd Conv. Inst. Brew., Sydney, 1994, pp 109-113. Umemoto, S., Y. Mitani, K. Shinotsuka. Primary fermentation with immobilized yeast in a fluidized bed reactor. MBAA Tech. Quart. 35:58-61, 1998.

Tata, M., P. Bower, S. Bromberg, D. Duncombe, J. Fehring, V. Lau, D. Ryder, P. Stassi. Immobilized yeast bioreactor systems for continuous beer fermentation. Biotechnol. Prog. 15:105-113, 1999.

Moreira, M.T., C. Palma, G. Feijoo, J.M. Lema. Strategies for the continuous production of ligninolytic enzymes in fixed and fluidised bed bioreactors. J. Biotechnol. 66:27-39, 1998. Sokol, W. Treatment of refinery wastewater in a three-phase fluidized bed bioreactor with a low-density biomass support. Biochem. Eng. J. 15:1-10, 2003.

Sokol, W. Operating parameters for a gas-liquid-solid fluidized bed bioreactor with a low-density support. Biochem. Eng. J. 8:203-212, 2001.

Van Wezel, A.L. Growth of cell strains and primary cells on microcarriers in homogeneous culture. Nature 216:64, 1967.

Crespi, C.L., T. Imamura, P. Leong, R. J. Fleischaker, H. Brunengraber, W.G. Thilly, D.G. Giard. Microcarrier culture: Applications in biological production and cell biology. Biotechnol. Bioeng. 23:2673-2689, 1981.

Giard, D.J. Human Interferon production with diploid fibroblat cells grown on microcarriers. Biotechnol. Bioeng. 21:433-442, 1979.

Gan, Q., S.J. Allen, G. Taylor. Design and operation of an integrated membrane reactor for enzymatic cellulose hydrolysis. Biochem. Eng. J. 12:223-229, 2002.

Wenten, I.G., I.N. Widiasa. Enzymatic hollow fiber membrane bioreactor for penicillin hydrolysis. Desalination 149:279-285, 2002.

Paolucci-Jeanjean, D., M.P. Belleville, G.M. Rios, N. Zakhia. Kinetics of continuous starch hydrolysis in a membrane reactor. Biochem. Eng. J. 6:233-238, 2000. Belhocine, D., H. Mokrane, H. Grib, H. Lounici, A. Pauss, N. Mameri Optimization of enzymatic hydrolysis of haemoglobin in a continuous membrane bioreactor. Chem. Eng. J. 76:189-96, 2000.

Indoles, D.S. Hollow fibre membrane bioreactors using E.coli for protein synthesis. Biotechnol. Bioeng. 25:2653, 1983.

Yang, R.Y.K., O. Bayraktar, H.T. Pu. Plant cell bioreactors with simultaneous electroperme-abilization and electrophoresis. J. Biotechnol. 100:13-22, 2003.

Millward, H.R., B.J. Bellhouse, I.J. Sobey. The vortex wave membrane bioreactor hydrodynamics and mass transfer. Chem. Eng. J. 62:175-181, 1996.

Moueddeb, H., J. Sanchez, C. Bardot, M. Fick. Membrane bioreactor for lactic acid production. J. Memb. Sci. 114:59-71, 1996.

Chang, H.N., S. Furusaki. Membrane bioreactors: present and prospects. In: Advances in Biochemical Engineering Biotechnology, Vol. 44, Fiechter, A., ed., Berlin: Springer-Verlag, 1991, pp 27-64.

Cheryan, M., M.A. Mehaia. A high performance membrane bioreactor for continuous fermentation of lactose to ethanol. Biotechnol. Letters 5: 519-524, 1983. Endo, I. A membrane bioreactor. Membrane 21:18-22, 1996.

Boyaval, P., C. Corre. Continuous fermentation of sweet whey permeate for propionic acid production in a CSTR with UF recycle. Biotechnol. Lett. 11:801-806, I987. Takaya, M., N. Matsumoto, H. Yanase. Characterization of membrane bioreactor for dry wine production. J. Biosci. Bioeng. 93:240-244, 2002.

Tanase, T., Y. Ikeda, K. Iwama, A. Hashimoto, T. Kataoka, Y. Tokushima, T. Kobayash. Comparison of micro-filtration hollow fiber bioreactors for mammalian cell culture. J. Ferment. Bioeng. 83:499-501, 1997.

Pulz, O., K. Scheibenbogen. Photobioreactors: design and performance with respect to light energy input. In: Advances in Biochemical Engineering Biotechnology, vol. 59, Scheper, T., ed., Berlin: Springer-Verlag, 1998, pp 124-152.

Cornet, J.F., C.G. Dussap, J.B. Gros. Kinetics and energetics of photosynthetic microorganisms in photobioreactors: application to Spirulina growth. In: Advances in Biochemical Engineering Biotechnology, Vol. 59, Scheper, T., ed., Berlin: Springer-Verlag, 1998, pp 153-224. Walther, I. Space bioreactors and their applications. Adv. Space Biol. Med. 8:197-213, 2002. Wolf, L. Bioregeneration in space. Adv. Space Biol. Med. 5:341-356, 1996. Klaus, D.M. Microgravity and its implications for fermentation biotechnology. Trends Biotechnol. 16:369-373, 1998.

Walther, I., B.V. Schoot, M. Boillat, A. Cogoli. Bioreactors for space: biotechnology of the next century. In: Engineering and Manufacturing for Biotechnology, Vol. 4, Hofman, M., P. Thonart, eds., Netherlands: Kluwer Academic, 1993, pp 241-251.

Omasaa, T., M. Kishimoto, M. Kawase, K. Yagi. An attempt at decision making in tissue engineering: reactor evaluation using the analytic hierarchy process. Biochemical Eng. J. Available online 7th Feb, 2004.

Langer, R., J.P. Vacanti. Tissue Engineering. Science 260:920-926,1993. Jasmund, I., A. Bader. Bioreactor developments for tissue engineering applications by the example of the bioartificial liver. In: Advances in Biochemical Engineering Biotechnology, Vol. 74, Scheper, T., ed., Berlin: Springer-Verlag, 2002, pp 99-109.

Martin, I., D. Wendt, M. Heberer. The role of bioreactors in tissue engineering. Trends Biotechnol. 22:80-86, 2004.

Noll, T., N. Jelinek, S. Schmidt, M. Biselli, C. Wandrey. Cultivation of Hematopoietic stem and progenitor cells: biochemical engineering aspects. In: Advances in Biochemical Engineering Biotechnology, Vol. 74, Scheper, T., ed., Berlin: Springer-Verlag, 2002, pp 111-128. Cabrita, G.J.M., B.S. Ferreira, C.L. da Silva, R. Goncalves, G.A. Porada, J.M.S Cabral. Hematopoietic stem cells: from the bone to the bioreactor. Trends Biotechnol. 21:233-240, 2003.

Melwin, B.K., J.V. Shanks. Influence of aeration on cytoplasmic pH of yeast in an NMR Airlift bioreactor. Biotechnol. Prog. 12:257-265, 1996.

Zupke, C., B. Foy. Nuclear magnetic resonance analysis of cell metabolism. Curr. Opin. Biotechnol. 6:192-197, 1995.

Kumar, S., C. Wittmann, E. Heinzle. Minibioreactors. Biotechnol. Lett. 26:1-10, 2004. Schugerl, K. Integrated processing of biotechnology products. Biotechnol. Adv. 18:581-599, 2000.

Malinowski, J.J. Two-phase partitioning bioreactors in fermentation technology. Biotechnol. Adv. 19:525-538, 2001.

Li, H., R. Mustacchi, C.J. Knowles, W. Skibar, G. Sunderland, I. Dalrympleb, S.A. Jackman. An electrokinetic bioreactor: using direct electric current for enhanced lactic acid fermentation and product recovery. Tetrahedron 60:655-661, 2004.

Gryta, M. The fermentation process integrated with membrane distillation. Sep. Purif. Technol. 24:283-296, 2001.

Greens, K.D., N.H. Thomas. An integrated "root tube" bioreactor/separator for transformed root cultures. J. Ferment. Bioeng. 81:453-457, 1996. Pandey, A. Solid-state fermentation. Biochem. Eng. J. 13:81-84, 2003. Raghavarao, K.S.M.S., T.V. Ranganathan, N.G. Karanth. Some engineering aspects of solidstate fermentation. Biochem. Eng. J. 13:127-135, 2003.

Durand, A. Bioreactor designs for solid state fermentation Biochem. Eng. J. 13:113-125, 2003. Pandey, A., C.R. Soccol, J.A. Rodriguez-Leon, P. Nigam. Aspects of design of fermentor in solid state fermentation. In: Solid State Fermentation in Biotechnology: Fundamentals and Applications, Pandey, A., ed., New Delhi: Asiatech Publ., ISBN: 81-87680-06-7, 2001, pp 73-77.

Nagel, F.J., J. Tramper, M. Bakker, A. Rinzema. Temperature control in a continuously mixed bioreactor for solid-state fermentation. Biotechnol. Bioeng. 72:219-230, 2001. Lonsane, B.K., N.P. Ghildyal, S. Budiatman, S.V. Ramakrishna. Engineering aspects of solid-state fermentation. Enz. Microbiol. Technol. 7:258-265, 1985.

Chisti, Y. Solid substrate fermentations, enzyme production, food enrichment. In: Encyclopaedia of Bioprocess Technology: Fermentation, Biocatalysis and Bioseparation, Vol 5, Flickinger, M.C., S.W. Drew, eds., New York: Wiley, 1999, pp 2446-2462. Durand, A., D. Chereau. A new pilot reactor for solid-state fermentation: application to protein enrichment of sugar beet pulp. Biotechnol. Bioeng. 31:476-486, 1988. Sangsurasak, P., D.A. Mitchell. Validation of a model describing two-dimensional heat transfer during solid-state fermentation in packed bed bioreactors. Biotechnol. Bioeng. 60:739-749, 1998.

Suryanarayan, S. Current industrial practice in solid state fermentations for secondary metabolite production: the Biocon India experience Biochemical Eng. J. 13:189-195, 2003. Marsh, A.J., D.M. Stuart, D.A. Mitchell, T. Howes. Characterizing mixing in a rotating drum bioreactor for solid-state fermentation. Biotechnol. Lett. 22:473-477, 2000. Kalogeris, E., F. Iniotaki, E. Topakas, P. Christakopoulos, D. Kekos, B.J. Macris. Performance of an intermittent agitation rotating drum type bioreactor for solid-state fermentation of wheat straw. Biores. Technol. 86:207-213, 2003.

Fung, C.J., D.A. Mitchell. Baffles increase performance of solid state fermentation in rotating drums. Biotechnol. Tech. 9:295-298, 1995.

Hardin, M.T., T. Howes, D.A. Mitchell. Mass transfer correlations for rotating drum bioreactors. J. Biotechnol. 97:89-101, 2002.

Robinson, T., P. Nigam. Bioreactor design for protein enrichment of agricultural residues by solid state fermentation. Biochem. Eng. J. 13:197-203, 2003.

Mitchell, D.A., N. Krieger, D.M. Stuart, A. Pandey. New developments in solid-state fermentation, II: rational approaches to the design, operation and scale-up of bioreactors. Proc. Biochem. 35:1211-1225, 2000.

Stanbury, P.F., S.J. Whitaker. Media for industrial fermentations. In: Principles of Fermentation Technology, 2nd ed., New Delhi: Aditya Books [Original Publisher: Butterworth & Heinemann (1995)], 1997, pp 93-122.

Calyk, P., E. Celik, I.E. Telli, C. Oktar, E. Özdemir. Protein-based complex medium design for recombinant serine alkaline protease production. Enz. Microb. Technol. 33:975-986, 2003. Beshay, U., H. El-Enshasy, I.M.K. Ismail, H. Moawad, E. Wojciechowska, S. Abd-El-Ghany. b-Glucanase production from genetically modified recombinant Escherichia coli: effect of growth substrates and development of a culture medium in shake flasks and stirred tank bioreactor. Proc. Biochem. 39:307-313, 2003.

Bai, Z.H., H.X. Zhang, H.Y. Qi, X.W. Peng, B.J. Li. Pectinase production by Aspergillus niger using wastewater in solid state fermentation for eliciting plant disease resistance. Biores. Technol. (In press), 2004.

Cornell, J.A. Experiments with mixtures, 3rd ed. New York: John Wiley & Sons, 2002. Myers, R.H., D.C. Montgomery. Response surface methodology: process and product optimization using designed experiments, 2nd ed. New York: John Wiley & Sons, 2002. Hounsa, C.G., J.M. Aubry, H.C. Dubourguier. Application of factorial and Doehlert design for optimization of pectate lyase production by a recombinant Escherichia coli. Appl. Microbiol. Biotechnol. 45:764-770,1996.

Rao, K.J., C.H. Kim, S.K. Rhee. Statistical optimization of medium for the production of recombinant hirudin from Saccharomyces cerevisiae using response surface methodology. Proc. Biochem. 35:639-647, 2000.

Dey, G., A. Mitra, R. Banerjee, B.R. Maiti. Enhanced production of amylase by optimization of nutritional constituents using response surface methodology. Biochem. Eng. J. 7:227-233, 2001.

Wua, J.Z., P.C.K. Cheunga, K.H. Wonga, N.I. Huang. Studies on submerged fermentation of Pleurotus tuber-regium (Fr.) singer, part 2: effect of carbon-to-nitrogen ratio of the culture medium on the content and composition of the mycelial dietary fibre. Food Chem. 85:101-105, 2004.

Atkinson, B., F. Mavituna. Process biotechnology. In: Biochemical Engineering and Biotechnology Handbook, 2nd ed., London: Macmillan, 1991, pp 68-73. Aristidou, A., M. Penttila. Metabolic engineering applications to renewable resource utilization. Curr. Opin. Biotechnol. 11:187-198, 2000.

Kuyper, M., A.A. Winkler, J.P. van Dijken, J.T. Pronk. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res. 4:655-664, 2004.

Zabriskie, D.W., W.B. Armiger, D.H. Phillips, P.A. Albano. Traders' Guide to Fermentation Media Formulation: Traders Protein. Memphis: 1999, pp3-20.

Jeng, D.K.H., K.A. Kaczmarek, A.G. Woodworth, G. Balasky. Mechanism of microwave sterilization in dry state. Appl. Environ. Microbiol. Published by American Society of Microbiology, 54:1330-1333, 1987.

Jayaram, S., G.S.P. Castle, A. Margaritis. Kinetics of sterilization of Lactobacillus brevis cells by the application of high voltage pulses. Biotechnol. Bioeng. 40:1412-1420, 1992. Bes, J. Strategies of sterilization. In: Operational modes of bioreactors. 2nd ed. Oxford: Butterworth-Heinemann, 1992, pp 203-234.

Deindoerfer, F.H., A.E. Humphrey. Analytical method for calculating heat sterilization times. Appl. Microbiol. 7:256-264, 1959.

Samsatli, N.J., N. Shah. Optimal design of continuous sterilization networks. Comp. Chem. Eng. 19:S95-S100, 1995.

Papagianni, M. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol. Adv. 22:189-259, 2004.

Hunt, G.R., R.W. Stieber. Inoculum development. In: Manual of Industrial Microbiology and Biotechnology, Demain, A.L., N.A. Solomon, eds., Washington: American Society of Microbiology, 1986, pp 32-40. URL:http://www.asm.org/

Parton, C., P. Willis. Strain preservation, inoculum preparation and inoculum development. In: Fermentation: a practical approach, McNeil, B., L.M. Harvey, eds., Oxford: IRL Press, 1990, pp 39-64.

Blakebrough, N. Industrial fermentations. In: Biochemical and Biological Engineering Science, Vol. 1, Blakebrough, N., ed., New York: Academic Press, 1967, pp 25-48. Gram, A. Biochemical engineering & industry. J. Biotechnol. 59:19-23, 1997. Bryson, V. The turbidostatic selector, part II: a device for automatic isolation of bacterial variants. Science 116:48-51, 1952.

Martin, G.A., W.P. Hempfling. Method for the regulation of microbial population density during continuous culture at high growth rates. Arch. Microbiol. 107:41-47, 1976.

104. Edwards, V.H., R.C. Ko, S.A. Balogh. Dynamics and control of microbial propagators subject to substrate inhibition. Biotechnol. Bioeng. 14:939-974, 1972.

105. Oltmann, L.F., G.S. Schoenmaker, W.N.M. Reijnders, A.H. Stouthamer. Modification of the pH-auxostat culture method for the mass cultivation of bacteria. Biotechnol. Bioeng. 20:921925, 1978.

106. Larsson, G., S.O. Enfors, H. Pham. The pH-auxostat as a tool for studying microbial dynamics in continuous fermentation. Biotechnol. Bioeng. 36:224-232, 1990.

107. Aarino, T.H., M.L. Suihko, V.S. Kauppinen. Isolation of acetic acid-tolerant baker's yeast variants in a turbidostat. Appl. Biochem. Biotechnol. 27:55-63, 1991.

108. Agarwal, P., H.C. Lim. Analyses of various control schemes for continuous bioreactors. Adv. Biochem. Eng. Biotechnol. 30:61-90, 1984.

109. Revised edition details: Sinclair, C.G., B. Kristiansen. J.D. Bu'lock. In: Fermentation Kinetics and Modelling (Biotechnology Series), John Wiley, 1991. London: Open University Press, 1987.

110. Longobardi, G.P. Fed-batch versus batch fermentation. Bioproc. Eng. 10:185-194, 1994.

111. Vasavada, A. Improving productivity of heterologous proteins in recombinant Saccharomyces cerevisiae fermentations. Adv. Appl. Microbiol. 41:25-54, 1995.

112. Oldshue, J.Y. Mixing in fermentation processes. Annual Reports on Fermentation Processes. Vol. 6, New York: Academic Press, 1983, pp 75-99.

113. Rushton, J.H., J.Y. Oldshue. Mixing present theory and practice, part I. Chem. Eng. Prog. 49:161-168, 1953.

114. Rushton, J.H., J.Y. Oldshue. Mixing present theory and practice, part II. Chem. Eng. Prog. 49:267-275, 1953.

115. Ryu, D.Y., J.Y. Oldshue. Reassessment of mixing cost in fermentation processes. Biotechnol. Bioeng. 29:621-629, 1977.

116. Coyne, J., P. Kaufman, T.A. Post. Key parameters for consideration in up-pumping technology in fermentation. Proceedings from Interphex East, 1998.

117. Gogate, P.R., A.A.C.M. Beenackers, A.B. Pandit. Multiple-impeller systems with a special emphasis on bioreactors: a critical review. Biochem. Eng. J. 6:109-144, 2000.

118. Arjunwadkar, S.J., K. Sarvanan, P.R. Kulkarni, A.B. Pandit. Gas-liquid mass transfer in dual impeller bioreactor. Biochem. Eng. J. 1:99-106, 1998.

119. Lally, K.S., J.Y. Oldshue, R.J. Weetman. Mass transfer and fluid mixing in fermentation. Presented at American Institute of Chemical Engineers 1985 Annual Meeting, Chicago, Illinois.

120. Walker, J.A.H., H. Holdsworth. Equipment Design. In: Biochemical Engineering: Unit Processes in Fermentation, Steel, R., ed., London: Heywood & Company Ltd., 1958, pp 225-273.

121. Kawase, Y., B. Halard, M. Moo-Young. Liquid phase mass transfer coefficients in bioreactors. Biotechnol. Bioeng. 39:1133-1140, 1992.

122. Steenkiste, F., K. Baert, D. Debruyker, V. Spiering, B.V.D. Schot, P. Arquint, R. Born, K. Schumann. A microsensor array for biochemical sensing. Sensors Actuators B44:409-412, 1997.

123. Harms, P., Y. Kostov, G. Rao. Bioprocess monitoring. Curr. Opin. Biotechnol. 13:124-127, 2002.

124. Onken, U., P. Weiland. Control and Optimization. In: Biotechnology, Vol. 2: Fundamentals of Biochemical Engineering, Rehm, H.J., G. Reed, eds., Weinheim, Germany: VCH Publishers, 1985, pp 787-806.

125. D'Souza, S.F. Microbial biosensors: review. Biosensors Bioelectronics 16:337-353, 2001.

126. Johnson, M.J., J. Borkowski, C. Engblom. Steam sterilizable probes for dissolved oxygen measurement. Biotechnol. Bioeng. 67:645-656, 2000.

127. Ocean Optics in Dunedin: FL produces the FOXY probe for dissolved oxygen, as well as several dip probes for pH that could be used to monitor bioprocesses. URL: http://www. oceanoptics.com

Pattison, R.N., J. Swamy, B. Mendenhall, C. Hwang, B.T. Fröhlich. Measurement and control of dissolved carbon dioxide in mammalian cell culture processes using an in situ fiber optic chemical sensor. Biotechnol. Prog. 16:769-774, 2000.

Onken, U., R. Buchholz, W. Sittig. Measurement and instrumentation. In: Biotechnology, Vol. 2: Fundamentals of Biochemical Engineering. Rehm, H.J., G. Reed, eds., Weinheim, Germany: VCH Publishers, 1985, pp 763-786.

Suhr, H., G. Wehnert, K. Schneider, C. Bettner, T. Scholz, P. Gissler, B. Jahne, T. Scheper. In situ microscopy for online characterization of cell population in bioreactors. Biotechnol. Bioeng. 47:106-116, 1995.

Sonnleitner, B., G. Locher, A. Fiechter. Biomass determination. J. Biotechnol. 25:5-22, 1992. Harms, P., Y. Kostov, G. Rao. Bioprocess monitoring. Curr. Opin. Biotechnol. 13:124-127, 2002.

Marose, S., C. Lindemann, R. Ulber, T. Scheper. Optical sensor systems for bioprocess monitoring. Trends Biotechnol. 17:30-34, 1999.

D'Auria S., J.R. Lakowicz. Enzyme fluorescence as a sensing tool: new perspectives in biotechnology. Curr. Opin. Biotechnol. 12:99-104, 2001.

Ducommun, P., I. Bolzonella, M. Rhiel, P. Pugeaud, U. von Stockar, I.W. Marison. On-line determination of animal cell concentration. Biotechnol. Bioeng. 72:515-522, 2001. Raj, A.E., H.S.S. Kumar, S.U. Kumar, M.C. Misra, N.P. Ghildyal, N.G. Karanth. High cell density fermentation of recombinant S.cerevisiae using glycerol. Biotechnol. Prog. 18:1130-1132, 2002.

Schugerl, K. Progress in monitoring, modeling and control of bioprocesses during the last 20 years. J. Biotechnol. 85:149-173, 2001.

Ferreira, L.S., M.B. De Souza, J.O. Trierweiler, O. Broxtermann, R.O.M. Folly, B. Hitzmann. Aspects concerning the use of biosensors for process control: experimental and simulation investigations. Comp. Chem. Eng. 27:1165-1173, 2003.

Ritzka, A., P. Sosnitza, R. Ulber, T. Scheper. Fermentation monitoring and process control. Curr. Opin. Biotechnol. 8:160-164, 1997.

Liu, J., G. Li. Application of biosensors for diagnostic analysis and bioprocess monitoring. Sensors Actuators B65:26-31, 2000.

Y.C. Liu, F.S. Wang, W.C. Lee. On-line monitoring and controlling system for fermentation processes. Biochem. Eng. J. 7:17-25, 2001.

Chae, H.J., M.P. DeLisa, H.J. Cha, W.A. Weigand, G. Rao, W.E. Bentley. Framework for online optimization of recombinant protein expression in high-cell-density Escherichia coli cultures using GFP-fusion monitoring. Biotechnol. Bioeng. 69:275-285, 2000. Heinzle, E., M. Reuss. Mass Spectrometry in Biotechnological Process Analysis and Control. New York: Plenum Press, 1987.

Lorenz, T., W. Schmidt, K. Schugerl. Sampling devices in fermentation technology: a review. Chem. Eng. J. 35:B15-B22, 1987.

Stephanopoulos, G. Metabolic Fluxes and Metabolic Engineering. Metab. Eng. 1:1-11, 1999. Kasprow, R.P., A.J. Lange, D.J. Kirvan. Correlation of fermentation yield with yeast extract composition as characterized by near infrared spectroscopy. Biotechnol. Prog. 14:318-325, 1998.

Dickinson, T.A., J. White, J.S. Kauer, D.R. Walt. Current trends in 'artificial-nose' technology. Trends Biotechnol. 16:250-258, 1998.

Kula, M.R. Recovery operations. In: Biotechnology, Vol. 2: Fundamentals of Biochemical Engineering, Rehm, H.J., G. Reed, eds., Weinheim: VCH Publishers, 1985, pp 725-760. Demain, A.L. Achievements in microbial technology. Biotechnol. Adv. 8:291-301, 1990. Demain, A.L. Microbial secondary metabolism: a new theoretical frontier for academia, a new opportunity for industry. In: Secondary Metabolites: Their Function and Evolution, Chadwick, D.J., J. Whelan, eds., New York: John Wiley, 1992, pp 3-23. Strohl, W.R. Biotechnology of Antibiotics, 2nd ed., New York: Marcel Dekker, 1997. Demain, A.L. Microbial biotechnology. Trends Biotechnol. 18:26-30, 2000.

Demain, A.L. Contribution of recombinant microbes and their potential. In: Recombinant Microbes for Industrial and Agricultural Applications. Murooka, T., T. Imanaka, eds., New York: Marcel-Dekker, 1994, pp 27-46.

McCoy, T.A., W. Whittle, E. Conway. A glass helix perfusion chamber for massive growth of cells in vitro. Proc. Soc. Exp. Biol. 109:235-237, 1962.

Whiteside, J.P., R.E. Spier. The scale-up from 0.1 to 100 litres of a unit process system for the production of four strains of FMDV from BHK monolayer cells. Biotechnol. Bioeng. 23:551-565, 1981.

Felix, H.R., K. Mosbach. Enhanced stability of enzymes in permeabilized and immobilized cells. Biotechnol. Lett. 4:181-186, 1982.

Mavituna, F., J.M. Park. Growth of immobilized plant cells in reticulate polyurethane foam matrices. Biotechnol. Lett. 7:637-640, 1985.

Wilkinson, P.J. The development of large-scale production process for tissue culture products. In: Bioreactors and Biotransformations, Moody, G.W., P.W. Baker, eds., Essex: Elsevier Science Publishers, 1987, pp 111-120.

Swartz, J.R. Escherichia coli recombinant DNA technology. In: Escherichia coli and Salmonella: Cellular and Molecular Biology, Neidhardt, F.C., ed., American Society of Microbiology Press, 1996, pp 1693-1711. URL:http://www.asm.org/ Curtin, M.E. Harvesting profitable products from plant tissue culture. Biotechnology 1:649-657, 1983.

Sahai, O., M. Knuth. Commercializing plant tissue processes: economics, problems and prospects. Biotechnol. Prog. 1:1-9, 1985.

Scragg, A.H., P. Bond, F. Leckie, R. Gresswell, M.W. Fowler. Growth and product formation by plant cell suspensions cultivated in bioreactors. In: Bioreactors and Biotransformations, Moody, G.W., P.W. Baker, eds., Essex: Elsevier Science Publishers, 1987, pp 12-25. Deus, B., M.H. Zenk. Exploitation of plant cells for the production of natural compounds. Biotechnol. Bioeng. 24:1965-1974, 1982.

Kieran, P.M., P.F. MacLoughlin, D.M. Malone. Plant cell suspension cultures: some engineering considerations. J. Biotechnol. 59:39-52, 1997.

Hamill, J.D., A.J. Parr, R.J. Robins, M.J.C. Rhodes, N.J. Walton. New routes to plant secondary products. Biotechnology 15:800-804, 1987.

Wilson, P.D.G., M.G. Hilton, R.J. Robins, M.J.C. Rhodes. Fermentation studies of transformed root cultures. In: Bioreactors and Biotransformations, Moody, G.W., P.W. Baker, eds., Essex: Elsevier Science Publishers, 1987, pp 38-51.

Wagner, F., H. Vogelmann. Cultivation of plant tissue culture in bioreactors and formation of secondary metabolites. In: Plant tissue culture and its biotechnological applications, Barz, W., E. Reinhard, M.H. Zenk, eds., Berlin: Springer-Verlag, 1977, pp 130-146. Mavituna, F., A.K. Wilkinson, P.D. Williams. Production of secondary metabolites by immobilized plant cells in novel bioreactors. In: Bioreactors and Biotransformations, Moody, G.W., P.W. Baker, eds., Essex: Elsevier, Appl. Sci. 1987, pp 26-37. Vinci, V.A., S.R. Parekh. Mammalian, Microbiol and Plant cells. In: Handbook of Industrial Cell Culture, Humana Press, December 2002.

Bylund, F., A. Castan, R. Mikkola, A. Veide, G. Larsson. Influence of scale-up on the quality of recombinant human growth hormone. Biotechnol. Bioeng. 69:119-128, 2000. George, S., G. Larsson, K. Olsson, S.O. Enfors. Comparison of the baker's yeast process performance in laboratory and production scale. Bioprocess Eng. 18:135-142, 1998. Charles, M. Fermentation scale-up: problems and possibilities. Trends Biotechnol. 3:124139, 1985.

Bylund, F., F. Guillard, S.O. Enfors, C. Tragardh, G. Larsson. Scale-down of recombinant protein production: a comparative study of scaling performance. Bioprocess Eng. 20:377-389, 1999. Oosterhuis, N.M.G., N.W.F. Kossen, A.P.C. Olivier, E.S. Schenk. Scale-down and optimization studies of the gluconic acid fermentation by Gluconobacter oxydans. Biotechnol. Bioeng. 27:711-720, 1985.

Humphrey, A. Shake flask to fermentor: what have we learned? Biotechnol. Prog. 14:3-7, 1998.

176. Rouf, S.A., M. Moo-Young, J.M. Scharer, P.L. Douglas. Single versus multiple bioreactor scale-up: economy for high-value products. Biochemical Eng. J. 6:25-31, 2000.

177. Horvath, B.E. Mammalian cell culture scale-up: is bigger, better? Biotechnology 7:468-469, 1989.

178. Birch, J.R., K. Lambert, P.W. Thompson, A.C. Kenney, L.A. Wood. Antibody production with airlift fermentors. In: Large Scale Cell Culture Technology, Lydersen, B.K., ed., Munich: Hanser, 1987.

179. M.C. Sharma, A.K. Gurtu. Asepsis in bioreactors. In: Advances in Applied Microbiology, Vol. 39, Neidleman, S., A.I. Laskin, eds., New York: Academic Press, 1993, pp 1-27.

180. Banks, G.T. Scale up of fermentation process. Topics Enzyme Ferment. Biotechnol. 3:170266, 1979.

181. Spier, R. Animal Cells in Culture: Moving into the exponential phase. Trends Biotechnol. 6:2-6, 1988.

182. Sutton S.V. W., A. M. Cundell. Microbial identification in the pharmaceutical industry, Pharmacopeial Forum, 30:1884-1894, 2004.

183. Design and analysis of biological reactors, 2nd ed., In: Biochemical Engineering Fundamentals, Bailey, J.E., D. F. Ollis, eds., Co.; Singapore: McGraw Hill, 1986, pp 592.

184. Stanbury, P.F., A. Whitaker. Sterilization. In: Principles of fermentation technology. New York: Pergamon, 1984.

185. Al-Masry, W.A. Effects of antifoam and scale-up on operation of bioreactors. Chem. Eng. Process. 38:197-201, 1999.

186. Ghildyal, N.P., B.K. Lonsane, N.G. Karanth. Foam control in submerged fermentation: State of the art. In: Adv. Appl. Microbiol. 33:173-222, 1988.

187. Reisman, H.B. Economic analysis of fermentation processes. Boca Raton, FL: CRC Press, 1988.

188. Charles, M., J. Wilson. Fermentor design. In: Bioprocess Engineering: Systems, Equipment and Facilities, Lydersen, B.K., N.A. D'Elia, K.L. Nelson, eds., New York: John Wiley, 1994, pp 3-67.

189. Vasconcelos, J.M.T., S.S. Alves. Direct dynamic kLa measurement in viscous fermentation broths: the residual gas hold up problem. Chem. Eng. J. 47:B35-B44, 1991.

190. Sukatsch, D.A., A. Dziengel. Biotechnology: A Handbook of Practical Formulae. Chicago: Longman, 1987.

191. Behmer, G.J., I.P.T. Moore, A.W. Nienow. Aerated and nonaerated power and mass transfer characteristics of prochem agitators. In: Biotechnol. Processes scale-up and mixing. Ho, C.S., J.Y. Oldshue, eds., NY: AIChE, 1987, pp 116-127.

192. Narendranathan, T.J. Designing fermentation equipment. Chem. Eng. 5:23-29,1986.

193. Perkowski, C.A. Detection of microscopic leaks in fermentor cooling coil. Biotechnol. Bioeng. 26:857-859, 1984.

194. Yokell, S. Understanding the pressure vessel codes. Chem. Eng. 93:75-85, 1986.

195. Dillon, C.P., D.W. Rahoi, A.H. Tuthill. Stainless steel for bioprocessing, part 2: classes of alloys. Bio. Pharm. 5:32-35, 1992.

196. Demain, A.L., N.A. Solomon. Manual of Industrial Microbiology and Biotechnology. Washington: American Society for Microbiology, 1986. URL: http://www.asm.org/

197. Meyer, P. Vessels for Biotechnology. In: Bioprocess engineering: systems, equipment and facilities, Lydersen, B.K., N.A. D'Elia, K.L. Nelson, eds., New York: John Wiley, 1994, pp 189-214.

198. Adey, H., M.S. Pollan. Piping and valves for biotechnology. In: Bioprocess Engineering: Systems, Equipment and Facilities, Lydersen, B.K., N.A. D'Elia, K.L. Nelson, eds., New York: John Wiley, 1994, pp 213-252.

199. Coleman, D., R. Evans. Fundamentals of passivation and passivity in the pharmaceutical industry. Pharm. Eng. 10:43-49, 1990.

200. Seiberling, D.A. Clean-in-place and sterilize-in-place. In: Aseptic Pharmaceutical Manufacturing, Olson, W.P., M.J. Groves, eds., Buffalo Grove, NY: Interpharm Press, 1987.

201. Schutte, M., K. Lally, G. Pogal. Mechanical and process design aspects for fermenter upgrades. Presented at 6th Annual Bioproc. Eng. Symp. Annaheim, CA, 1992.

202. Rushton, J.H., E.W. Costwich, H.J. Everett. Power characteristics of mixing implellers, part

I. Chemical Eng. Prog. 46:395-404, 1950.

203. Rushton, J.H., E.W. Costwich, H.J. Everett. Power characteristics of mixing implellers, part

II. Chemical Eng. Prog. 46:467-476, 1950.

204. Reuss, M., R.K. Bajpai, R. Lenz, H. Niebelschut, Papalexiou. Scale-up strategies based on the interactions of transport and reaction. 6th International Fermentation Symposium, London (Ontario), Canada, July 20-25, 1980.

205. Oosterhuis, N.M.G. Scale-up of Bioreactors a scale-down approach. PhD thesis. Delft, University of Technology, Netherlands, 1984.

206. Dyck, M.K., D. Lacroix, F. Pothier, M.A. Sirard. Making recombinant proteins in animals: different systems, different applications. Trends Biotechnol. 21:394-403, 2003.

207. Yang, X., X.C. Tian, Y. Dai, B. Wang. Transgenic farm animals: applications in agriculture and biomedicine. Biotechnol. Ann. Rev. 5:269-292, 2000.

208. Fan, J., T. Watanabe. Transgenic rabbits as therapeutic protein bioreactors and using human disease models. Pharma. Therap. 99:261-282, 2003.

209. Ghong, Z., H. Wan, T.L. Tay, H. Wang, M. Chen, T. Yan. Development of transgenic fish for ornamental and bioreactor by strong expression of fluorescent proteins in the skeletal muscle. Biochem. Biophys. Res. Comm. 308:58-63, 2003.

210. Larrick, J.W., D.W. Thomas. Producing proteins in transgenic plants and animals. Curr. Opin. Biotechnol. 12:411-418.

211. Fischer, R., E. Stoger, S. Schillberg, P. Christou, R.M. Twyman. Plant-based production of biopharmaceuticals. Curr. Opin. Plant Biol. 7:152-158, 2004.

212. Giri, A., M.L. Narasu. Transgenic hairy roots: recent trends and applications. Biotechnol. Adv. 18:1-22, 2000.

213. Bornke, F., M. Hajirezaei, U. Sonnewald. Potato tubers as bioreactors for platinose production. J. Biotechnol. 96:119-124, 2002.

214. Sala, F., M.M. Rigano, A. Barbante, B. Basso, A.M. Walmsley, S. Castiglione. Vaccine antigen production in transgenic plants: strategies, gene constructs and perspectives. Vaccine 21:803-808, 2003.

215. Yoshida, K., T. Matsui, A. Shinmyo. The plant vesicular transport engineering for the production of recombinant proteins. J. Mol. Cat. B:Enzymatic, 28: 167-171, 2004.

216. Yoshida, K., A. Shinmyo. Transgene expression system in plant, a natural bioreactor. J. Biosci. Bioeng. 90:353-362, 2000.

217. Maranga, L., A. Cunha, J. Clemente, P. Cruz, M.J.T. Carrondo. Scale-up of virus-like particles production: effects of sparging, agitation and bioreactor scale on cell growth, infection kinetics and productivity. J. Biotechnol. 107:55-64, 2004.

Was this article helpful?

0 0
Organic Gardeners Composting

Organic Gardeners Composting

Have you always wanted to grow your own vegetables but didn't know what to do? Here are the best tips on how to become a true and envied organic gardner.

Get My Free Ebook

Post a comment