Impact Of Mutation Rates On Paternity Testing

Low mutation rates are especially critical for paternity testing (see Chapter 23). This is because links are being made between the child and the alleged father based on the assumption that alleles remain the same when they are passed from one generation to the next. Parent-offspring allele transfer information tests for germ-line mutations. Additionally, genotypes from different kinds of tissues from the same individual are examined to demonstrate that no somatic mutations occur.

Mutations have practical consequences for paternity testing and mass disaster investigations (see Chapter 24) as well as population genetics where conclusions are being drawn from genetic data across one generation or many generations. In paternity testing situations, a high mutation rate for a STR marker could result in a false exclusion at that locus. With regards to population evolution studies, the mutation process must be subtracted from population demography and population history in order to accurately address the population

System

Maternal Meioses (%)

Paternal Meioses

(%)

Number from either

Total Number of Mutations

Mutation Rate

CSF1PO

70/179 353 (0.04)

727/504342 (0.14)

303

1 100/683 695

0.16%

FGA

134/238 378 (0.06)

1 481/473 924 (0.31)

495

2110/712 302

0.30%

TH01

23/189478 (0.01)

29/346 518 (0.008)

23

75/535 996

0.01%

TPOX

16/299186 (0.005)

43/328 067 (0.01)

24

83/627253

0.01%

VWA

133/400 560 (0.03)

907/646 851 (0.14)

628

1 668/1 047411

0.16%

D3S1358

37/244484 (0.02)

429/336 208 (0.13)

266

732/580692

0.13%

D5S818

84/316102 (0.03)

537/468 366 (0.11)

303

924/784468

0.12%

D7S820

43/334 886 (0.01)

550/461 457 (0.12)

218

811/796 343

0.10%

D8S1179

54/237235 (0.02)

396/264350 (0.15)

225

675/501 585

0.13%

D13S317

142/348 395 (0.04)

608/435 530 (0.14)

402

1 152/783 925

0.15%

D16S539

77/300 742 (0.03)

350/317146 (0.11)

256

683/617888

0.11%

D18S51

83/130 206 (0.06)

623/278 098 (0.22)

330

1 036/408 304

0.25%

D21S11

284/258 795 (0.11)

454/306198 (0.15)

423

1 161/564993

0.21%

Penta D

12/18 701 (0.06)

10/15 088 (0.07)

21

43/33 789

0.13%

Penta E

22/39121 (0.06)

58/44152 (0.13)

55

135/83 273

0.16%

D2S1338

2/25 271 (0.008)

61/81 960 (0.07)

31

94/107231

0.09%

D19S433

22/28 027 (0.08)

16/38 983 (0.04)

37

75/67010

0.11%

F13A01

1/10474 (0.01)

37/65 347 (0.06)

3

41/75 821

0.05%

FES/FPS

3/18 918 (0.02)

79/149 028 (0.05)

None reported

82/167 946

0.05%

F13B

2/13 157 (0.02)

8/27183 (0.03)

1

11/40 340

0.03%

LPL

0/8 821 (< 0.01)

9/16 943 (0.05)

4

13/25 764

(ACTBP2)

0/330 (< 0.30)

330/51 610 (0.64)

None reported

330/51 940

0.64%

genetic questions being asked. Any time a family reference sample is used to try and match recovered remains during a mass disaster or missing persons investigation, mutations become an important issue because an exact match cannot be made when a mutation is present.

High mutation rates help keep STR markers polymorphic and therefore useful in human identity testing. It is important to keep in mind that while mutations can potentially impact kinship reference samples they will not affect direct matches between personal effects and victims or perpetrators and crime scene evidence since any mutation that occurs will be consistent over an individual's lifetime.

REFERENCES AND ADDITIONAL READING

Alves, C., Gusmao, L., Pereira, L. and Amorim, A. (2003) Progress in Forensic Genetics, 9, International Congress Series 1239, 131-135.

Applied Biosystems (1999) AmpFlSTR® SGM Plus™ PCR Amplification Kit User's Manual, P/N 4309589. Foster City, California: Applied Biosystems.

Bacher, J. and Schümm, J.W. (1998) Profiles in DNA, 2 (2), pp. 3-6. Madison, Wisconsin: Promega Corporation.

Bacher, J.W., Hennes, L.F., Gu, T., Tereba, A., Micka, K.A., Sprecher, C.J., Lins, A.M., Amiott, E.A., Rabbach, D.R., Taylor, J.A., Helms, C., Donis-Keller, H. and Schümm, J.W. (1999) Proceedings of the Ninth International Symposium on Human Identification, pp. 24-37. Madison, Wisconsin: Promega Corporation.

Brinkmann, B., Klintschar, M., Neuhuber, F., Huhne, J. and Rolf, B. (1998) American Journal of Human Genetics, 62, 1408-1415.

Brownstein, M.J., Carpten, J.D. and Smith, J.R. (1996) BioTechniques, 20, 1004-1010.

Budowle, B. and Sprecher, C.J. (2001) Journal of Forensic Sciences, 46, 637-641.

Budowle, B., Masibay, A., Anderson, S.J., Barna, C., Biega, L., Brenneke, S., Brown, B.L., Cramer, J., DeGroot, G.A., Douglas, D., Duceman, B., Eastman, A., Giles, R., Hamill, J., Haase, D.J., Janssen, D.W., Kupferschmid, T.D., Lawton, T., Lemire, C., Llewellyn, B., Moretti, T., Neves, J., Palaski, C., Schueler, S., Sgueglia, J., Sprecher, C., Tomsey, C. and Yet, D. (2001) Forensic Science International, 124, 47-54.

Butler, J.M. and Becker, C.H. (2001) Improved analysis of DNA short tandem repeats with time-of-flight mass spectrometry. Washington, DC: National Institute of Justice. Available online at: http://www.ojp.usdoj.gov/nij/pubs-sum/188292.htm.

Butler, J.M., Buel, E., Crivellente, F. and McCord, B.R. (2004) Electrophoresis, 25, 1397-1412.

Chakraborty, R., de Andrade, M., Daiger, S.P. and Budowle, B. (1992) Annuals of Human Genetics, 56, 45-57.

Clark, J.M. (1988) Nucleic Acids Research, 16, 9677-9686.

Clayton, T.M., Hill, S.M., Denton, L.A., Watson, S.K. and Urquhart, A.J. (2004) Forensic Science International, 139, 255-259.

Cotton, E.A., Allsop, R.F., Guest, J.L., Frazier, R.R., Koumi, P., Callow, I.P., Seager, A. and Sparkes, R.L. (2000) Forensic Science International, 112, 151-161.

Crouse, C., Rogers, S., Amiott, E., Gibson, S. and Masibay, A. (1999) Journal of Forensic Sciences, 44, 87-94.

Drabek, J., Chung, D.T., Butler, J.M. and McCord, B.R. (2004) Journal of Forensic Sciences, 49 (4), 859-860.

Edwards, A., Civitello, A., Hammond, H.A. and Caskey, C.T. (1991) American Journal of Human Genetics, 49, 746-756.

Ellegren, H. (2004) Nature Reviews Genetics, 5, 435-445.

Gill, P., Urquhart, A., Millican, E.S., Oldroyd, N.J., Watson, S., Sparkes, R. and Kimpton, C.P. (1996) International Journal of Legal Medicine, 109, 14-22.

Ginot, F., Bordelais, I., Nguyen, S. and Gyapay, G. (1996) Nucleic Acids Research, 24, 540-541.

Hauge, X.Y. and Litt, M. (1993) Human Molecular Genetics, 2, 411-415.

Henke, J. and Henke, L. (1999) American Journal of Human Genetics, 64, 1473.

Holt, C.L., Buoncristiani, M., Wallin, J.M., Nguyen, T., Lazaruk, K.D. and Walsh, P.S. (2002) Journal of Forensic Sciences, 47, 66-96.

Kimpton, C.P., Gill, P., Walton, A., Urquhart, A., Millican, E.S. and Adams, M. (1993) PCR Methods and Applications, 3, 13-22.

Kline, M.C., Jenkins, B. and Rogers, S. (1998) Journal of Forensic Sciences, 43, 250.

Krenke, B.E., Tereba, A., Anderson, S.J., Buel, E., Culhane, S., Finis, C.J., Tomsey, C.S., Zachetti, J.M., Masibay, A., Rabbach, D.R., Amiott, E.A. and Sprecher, C.J. (2002) Journal of Forensic Sciences, 47, 773-785.

Lazaruk, K., Wallin, J., Holt, C., Nguyen, T. and Walsh, P.S. (2001) Forensic Science International, 119, 1-10.

Leibelt, C., Budowle, B., Collins, P., Daoudi, Y., Moretti, T., Nunn, G., Reeder, D. and Roby, R. (2003) Forensic Science International, 133, 220-227.

Lins, A.M., Micka, K.A., Sprecher, C.J., Taylor, J.A., Bacher, J.A., Rabbach, D.R., Bever, R.A., Creacy, S.D. and Schumm, J.W. (1998) Journal of Forensic Sciences, 43, 1178-1190.

Magnuson, V.L., Ally, D., Nylund, S.J., Karanjawala, Z.E., Rayman, J.B., Knapp, J.I., Lowe, A.L., Ghosh, S. and Collins, F.S. (1996) BioTechniques, 21, 700-709.

Meldgaard, M. and Morling, N. (1997) Electrophoresis, 18, 1928-1935.

Mornhinweg, E., Luckenbach, C., Fimmers, R. and Ritter, H. (1998) Forensic Science International, 95, 173-178.

Nadir, E., Margalit, H., Gallily, T. and Ben-Sasson, S.A. (1996) Proceedings of the National Academy of Sciences USA, 93, 6470-6475.

Nelson, M.S., Levedakou, E.N., Matthews, J.R., Early, B.E., Freeman, D.A., Kuhn, C.A., Sprecher, C.J., Amin, A.S., McElfresh, K.C. and Schümm, J.W. (2002) Journal of Forensic Sciences, 47, 345-349.

Puers, C., Hammond, H.A., Jin, L., Caskey, C.T. and Schümm, J.W. (1993) American Journal of Human Genetics, 53, 953-958.

Sajantila, A., Lukka, M. and Syvanen, A.-C. (1999) European Journal of Human Genetics, 7, 263-266.

Schumm, J.W., Lins, A.M., Micka, K.A., Sprecher, C.J., Rabbach, D.R. and Bacher, J.W. (1996) Proceeding of the Seventh International Symposium on Human Identification, pp. 70-88. Madison, Wisconsin: Promega Corporation.

Szibor, R., Lautsch, S., Plate, I., Bender, K. and Krause, D. (1998) International Journal of Legal Medicine, 111, 160-161.

Thomson, J.A., Pilotti, V., Stevens, P., Ayres, K.L. and Debenham, P.G. (1999) Forensic Science International, 100, 1-16.

Urquhart, A., Chiu, C.T., Clayton, T., Downes, T., Frazier, R., Jones, S., Kimpton, C.,

Lareu, M.V., Millican, E., Oldroyd, N., Thompson, C., Watson, S., Whitaker, J. and Gill, P. (1994) Proceedings of the Fifth International Symposium on Human Identification, pp.73-83. Madison, Wisconsin: Promega Corporation.

Wallin, J.M., Holt, C.L., Lazaruk, K.D., Nguyen, T.H. and Walsh, P.S. (2002) Journal of Forensic Sciences, 47, 52-65.

Walsh, P.S., Fildes, N.J. and Reynolds, R. (1996) Nucleic Acids Research, 24, 2807-2812.

Walsh, P.S. (1998) Journal of Forensic Sciences, 43, 1103-1104.

Watson, J.D. and Berry, A. (2003) DNA: The Secret of Life. New York: Knopf.

Weber, J.L. and Wong, C. (1993) Human Molecular Genetics, 2, 1123-1128.

Wiegand, P., Meyer, E. and Brinkmann, B. (2000) Electrophoresis, 21, 889-895.

CHAPTER 7

Was this article helpful?

0 0
Stammering Its Cause and Its Cure

Stammering Its Cause and Its Cure

This book discusses the futility of curing stammering by common means. It traces various attempts at curing stammering in the past and how wasteful these attempt were, until he discovered a simple program to cure it. The book presents the life of Benjamin Nathaniel Bogue and his struggles with the handicap. Bogue devotes a great deal of text to explain the handicap of stammering, its effects on the body and psychology of the sufferer, and its cure.

Get My Free Ebook


Post a comment