Meanwhile, the DOE continued to be interested in the problem of identifying mutations caused by radiation exposure. Led by associate director Charles DeLisi, the DOE became a strong supporter of the genome-mapping initiative, for it understood that sequencing the entire genome would provide the best way to analyze such mutations. Thus the DOE became the first federal agency to begin funding the Human Genome Project.

Mapping the human genome came to be called the "Holy Grail of Molecular Biology," and many biologists were interested in the project. Most notable among them was Nobel laureate Gilbert who, through his interest, personality, and academic ties, developed enormous enthusiasm for the project. The initial goals set out for the Human Genome Project were threefold: to develop genetic linkage maps; to create a physical map of ordered clones of DNA sequences; and to develop the capacity for large-scale sequencing, because faster and cheaper machines along with other great leaps in technology would be needed to get the job done.

In 1988 the National Institutes of Health (NIH) set up an Office of the Human Genome, and Watson agreed to head the project. It had an estimated budget of approximately $3 billion, and 3 percent of the funding was devoted to the study of the social and ethical issues that would arise from the endeavor. A target date for completion of the project was set for September 30, 2005. By 1990 the Human Genome Project had received the additional endorsement of the National Academy of Sciences, the National Research Council, the DOE, the National Science Foundation, the U.S. Department of Agriculture, and the Howard Hughes Medical Institute. Sequencing of the human genome had now officially begun.

While sequencing the human genome was a primary goal, other sequencing projects were just as important. Many scientists established projects that sought to sequence several organisms of genetic, biochemical, or medical importance (see Table 1). These so-called model organisms, with their smaller genomes, would be useful in testing sequencing methodologies and for providing invaluable information that could be used to identify corresponding genes in the human genome. Sequence databases were established, and computer programs to search these databases were written.

Was this article helpful?

0 0

Post a comment