Organisms Transform Energy and Matter from Their Surroundings

For chemical reactions occurring in solution, we can define a system as all the reactants and products present, the solvent that contains them, and the immediate at-mosphere—in short, everything within a defined region of space. The system and its surroundings together constitute the universe. If the system exchanges neither matter nor energy with its surroundings, it is said to be isolated. If the system exchanges energy but not matter with its surroundings, it is a closed system; if it exchanges both energy and matter with its surroundings, it is an open system.

A living organism is an open system; it exchanges both matter and energy with its surroundings. Living organisms derive energy from their surroundings in two ways: (1) they take up chemical fuels (such as glucose) from the environment and extract energy by oxidizing them (see Box 1-3, Case 2); or (2) they absorb energy from sunlight.

The first law of thermodynamics, developed from physics and chemistry but fully valid for biological systems as well, describes the principle of the conservation of energy: in any physical or chemical change, the total amount of energy in the universe remains constant, although the form of the energy may change. Cells are consummate transducers of energy, capable of interconverting chemical, electromagnetic, mechanical, and osmotic energy with great efficiency (Fig. 1-24).

My Life My Diet

My Life My Diet

I lost over 60 pounds and 4+ inches off my waist without pills, strenuous exercise, or any of the things that the diet experts tell you to do...and I did it in less than 4 months! If you have the desire, and can read through my e-book , then this is for you! I could have easily made it a lot more difficult, with stacks of information that people will never read, but why?

Get My Free Ebook


Post a comment