Bandettini, P.A., Wong, E.C., Hinks, R.S., Tikofsky, R.S., and Hyde, J.S., Time course EPI of human brain function during task activation, Magn. Reson. Med., 25, 390-397, 1992.

Belliveau, J.W., Kennedy, D.N., McKinstry, R.C., Buchbinder, B.R., Weisskoff, R.M., Cohen, M.S. et al., Functional mapping of the human visual cortex by magnetic resonance imaging, Science, 254, 716-718, 1991. Binder, J.R., Rao, S.M., Hammeke, T.A., Yetkin, F.Z., Jesmanowicz, A., Bandettini, P.A. et al., Functional magnetic resonance imaging of human auditory cortex, Ann. Neurol., 35, 662-672, 1993.

Brunia, C.H.M., de Jong, B.M., Berg-Lenssen, M.M.C., and Paans, A.M.J., Visual feedback about time estimation is related to a right hemisphere activation measured by PET, Exp. Brain Res, 130, 328-337, 2000. Cohen, D., Matell, M.S., Meck, W.H., and Nicolelis, M.A.L., Role of the medial dorsal prefrontal cortex in a time perception task, Soc. Neurosci. Abstr, 26, 365.16, 2000.

Coull, J.T. and Nobre, A.C., Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI, J. Neurosci, 18, 7426-7435, 1998.

Cox, R.W., AFNI: software for analysis and visualization of functional magnetic resonance neuroimages, Comput. Biomed. Res., 29, 162-173, 1996.

Gibbon, J., Church, R.M., and Meck, W.H., Scalar timing in memory, in Annals of the New York Academy of Sciences: Timing and Time Perception, Vol. 423, Gibbon, J. and Allan, L., Eds., New York Academy of Sciences, New York, 1984, pp. 52-77.

Gibbon, J., Malapani, C., Dale, C.L., and Gallistel, C.R., Toward a neurobiology of temporal cognition: advances and challenges, Curr. Opin. Neurobiol., 7, 170-184, 1997.

Gratton, G. and Fabiani, M., The event-related optical signal: a new tool for studying brain function, Int. J. Psychophysiol., 42, 109-121, 2001.

Gratton, G., Fabiani, M., Corballis, P.M., Hood, D.C., Goodman-Wood, M.R., Hirsch, J. et al., Fast and localized event-related optical signals (EROS) in the human occipital cortex: comparisons with the visual evoked potential and fMRI, Neuroimage, 6, 168-180, 1997.

Gratton, G., Goodman-Wood, M.R., and Fabiani, M., Comparison of neuronal and hemody-namic measures of the brain response to visual stimulation: an optical imaging study, Hum. Brain Mapping, 13, 13-25, 2001.

Gratton, G., Sarno, A., Maclin, E., Corballis, P.M., and Fabiani, M., Toward noninvasive three-dimensional imaging of the time course of cortical activity: investigation of the depth of the event-related optical signal, Neuroimage, 11, 491-504, 2000.

Gruber, O., Kleinschmidt, A., Binkofski, F., Steinmetz, H., and von Cramon, D.Y., Cerebral correlates of working memory for temporal information, Neuroreport, 11, 1689-1693, 2000.

Hammeke, T.A., Yetkin, F.Z., Mueller, W.M., Morris, G.L., Haughton, V.M., Rao, S.M. et al., Functional magnetic resonance imaging of somatosensory stimulation, Neurosurgery, 35, 677-681, 1994.

Harrington, D.L. and Haaland, K.Y., Neural underpinnings of temporal processing: a review of focal lesion, pharmacological, and functional imaging research, Rev. Neurosci., 10, 91-116, 1999.

Harrington, D.L., Haaland, K.Y., and Knight, R.T., Cortical networks underlying mechanisms of time perception, J. Neurosci., 18, 1085-1095, 1998.

Harrington, D.L., Rao, S.M., Haaland, K.Y., Bobholz, J.A., Mayer, A.R., Binder, J.R. et al., Specialized neural systems underlying representations of sequential movements, J. Cognit. Neurosci., 12, 56-77, 1999.

Hinton, S.H. and Meck, W.H., How time flies: functional and neural mechanisms of interval timing, in Time and Behaviour: Psychological and Neurobiological Analyses, Brad-shaw, C.M. and Szabadi, E., Eds., Elsevier, New York, 1997a, pp. 409-457.

Hinton, S.C. and Meck, W.H., The "internal clocks" of circadian and interval timing, Endeavour, 21, 3-8, 1997b.

Hinton, S.C., Meck, W.H., and MacFall, J.R., Peak-interval timing in humans activates frontalstriatal loops, Neuroimage, 3, S224, 1996.

Hinton, S.C. and Rao, S.M., "One-thousand, one ... one-thousand, two ... ": chronometric counting violates Weber's law in interval timing, Psychonomic Bull. Rev, submitted.

Hyde, J.S., Biswal, B.B., and Jesmanowicz, A., High-resolution fMRI using multislice partial k-space GR-EPI with cubic voxels, Magn. Reson. Med., 46, 114-125, 2001.

James, W., Principles of Psychology, Holt, New York, 1890.

Jueptner, M., Rijntjes, M., Weiller, C., Faiss, J.H., Timmann, D., Mueller, S.P. et al., Localization of a cerebellar timing process using PET, Neurology, 45, 1540-1545, 1995.

Lepage, R., Beaudoin, G., Boulet, C., O'Brien, I., Marcantoni, W., Bourgouin, P. et al., Frontal cortex and the programming of repetitive tapping movements in man: lesion effects and functional neuroimaging, Cognit. Brain Res., 8, 17-25, 1999.

Logothetis, N.K., Pauls, J., Augath, M., Trinath, T., and Oeltermann, A., Neurophysiological investigation of the basis of the fMRI signal, Nature, 412, 150-157, 2001.

Macar, F., Lejeune, H., Bonnet, M., Ferrara, A., Pouthas, V., Vidal, F. et al., Activation of the supplementary motor area and of attentional networks during temporal processing, Exp. Brain Res, 142, 475-485, 2002.

Maquet, P., Lejeune, H., Pouthas, V., Bonnet, M., Casini, L., Macar, F. et al., Brain activation induced by estimation of duration: a PET study, Neuroimage, 3, 119-126, 1996.

Matell, M.A., Chelius, C.M., Meck, W.H., and Sakata, S., Effect of unilateral or bilateral retrograde 6-OHDA lesions of the substantia nigra pars compacta on interval timing, Soc. Neurosci. Abstr, 26, 650.7, 2000.

Meck, W.H., Neuropharmacology of timing and time perception, Cognit. Brain Res., 3, 227-242, 1996.

Meck, W.H., Coincidence detection as the core process for interval timing in frontal-striatal circuits, Neuroimage Program Suppl, 668, 2002.

Meck, W.H. and Benson, A.M., Dissecting the brain's internal clock: how frontal-striatal circuitry keeps time and shifts attention, Brain Cognit., 48, 195-211, 2002.

Meck, W.H., Hinton, S.C., and Matell, M.S., Coincidence-detection models of interval timing: evidence from fMRI studies of cortico-striatal circuits, Neuroimage, 7, S281, 1998.

Menon, R.S. and Goodyear, B.G., Submillimeter functional localization in human striate cortex using BOLD contrast at 4 tesla: implications for the vascular point-spread function, Magn. Reson. Med., 41, 230-235, 1999.

Menon, R.S., Luknowsky, D.C., and Gati, J.S., Mental chronometry using latency-resolved functional MRI, Proc. Natl. Acad. Sci. U.S.A., 95, 10902-10907, 1998.

Ogawa, S., Lee, T.M., Kay, A.R., and Tank, D.W., Brain magnetic resonance imaging with contrast dependent on blood oxygenation, Proc. Natl. Acad. Sci. U.S.A., 87, 9868-9872, 1990.

Ogawa, S., Tank, D.W., Menon, R., Ellermann, J.M., Kim, S.-G., Merkle, H. et al., Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging, Proc. Natl. Acad. Sci. U.S.A., 89, 5951-5955, 1992.

Pardo, J.V., Fox, P.T., and Raichle, M.E., Localization of a human system for sustained attention by positron emission tomography, Nature, 249, 61-64, 1991.

Penhune, V.B., Zatorre, R.J., and Evans, A.C., Cerebellar contributions to motor timing: a PET study of auditory and visual rhythm reproduction, J. Cognit. Neurosci, 10, 752-765, 1998.

Posner, M.I. and Peterson, S.E., The attention system of the human brain, Annu. Rev. Neurosci., 13, 25-42, 1990.

Rakitin, B.C., Gibbon, J., Penney, T.B., Malapani, C., Hinton, S.C., and Meck, W.H., Scalar expectancy theory and peak-interval timing in humans, J. Exp. Psychol. Anim. Behav. Process, 24, 15-33, 1998.

Rao, S.M., Binder, J.R., Bandettini, P.A., Hammeke, T.A., Yetkin, F.Z., Jesmanowicz, A. et al., Functional magnetic resonance imaging of complex human movements, Neurology, 43, 2311-2318, 1993.

Rao, S.M., Mayer, A.R., and Harrington, D.L., The evolution of brain activation during temporal processing, Nat. Neurosci, 4, 317-323 , 2001.

Talairach, J. and Tournoux, P., Co-planar Stereotaxic Atlas of the Human Brain, Thieme, New York, 1988.

1 o Electrophysiological Evidence for Specific Processing of Temporal Information in Humans

0 0

Post a comment