References

Adret, P., Operant conditioning, song learning and imprinting to taped song in zebra finch, Anim. Behav., 46, 149-159, 1993.

Alexander, G.E., DeLong, M.R., and Strick, P.L., Parallel organization of functionally segregated circuits linking basal ganglia and cortex, Annu. Rev. Neurosci, 9, 357-391, 1986.

Ball, G.F. and Hulse, S.H., Birdsong, Am. Psychol, 53, 37-58, 1998.

Basham, M.E., Nordeen, E.J., and Nordeen, K.W., Blockade of NMDA receptors in the anterior forebrain impairs sensory acquisition in the zebra finch (Taenopygia guttata), Neurobiol. Learn. Mem., 66, 295-304, 1996.

Beiser, D.G., Hua, S.E., and Houk, J.C., Network models of the basal ganglia, Curr. Opin. Neurobiol, 7, 185-190, 1997.

Boettiger, C.A. and Doupe, A.J., Developmentally restricted synaptic plasticity in a songbird nucleus required for song learning, Neuron, 31, 809-818, 2001.

Bottjer, S.W. and Johnson, F., Circuits, hormones and learning: vocal behavior in songbirds, J. Neurobiol., 33, 602-618, 1997.

Bottjer, S.W., Miesner, E.A., and Arnold, A.A., Forebrain lesions disrupt development but not maintenance of song in passerine birds, Science, 224, 901-903, 1984.

Brainard, M.S. and Doupe, A.J., Auditory feedback in learning and maintenance of vocal behaviour, Nat. Neurosci., 1, 31-40, 2000.

Brauth, S.E., Fergusson, J.L., and Kitt, C.A., Prosencephalic pathways related to the paleostriatum of the pigeon, Brain Res, 147, 205-221, 1978.

Brenowitz, E.A., Comparative approaches to the avian song system, J. Neurobiol, 33, 517-531, 1997.

Brown, L.L., Schneider, J.S., and Lidsky, T.I., Sensory and cognitive functions of the basal ganglia, Curr. Opin. Neurobiol, 7, 157-163, 1997.

Capsius, B. and Leppelsack, H.J., Influence of urethane anesthesia neural processing in the auditory cortex analogue of a songbird, Hear. Res., 96, 59-70, 1996.

Charpier, S. and Deniau, J.M., In vivo activity-dependent plasticity at cortico-striatal connections: evidence for physiological long-term potentiation, Proc. Natl. Acad. Sci. U.S.A., 94, 7036-7040, 1997.

Church, R.M., Properties of the internal clock, in Annals of the New York Academy of Sciences, Vol. 423, Timing and Time Perception, Gibbon, J. and Allan, L.G., Eds., New York Academy of Sciences, New York, 1984, pp. 566-582.

Church, R.M. and Gibbon, J., Temporal generalization, J. Exp. Psychol. Anim. Behav. Process., 8, 165-168, 1982.

Dave, A.S. and Margoliash, D., Song replay during sleep and computational rules for sensorimotor vocal learning, Science, 290, 812-816, 2000.

Dave, A.S., Yu, A.C., and Margoliash, D., Behavioral state modulation of auditory selectivity in a vocal motor system, Science, 282, 2250-2254, 1998.

Dietrich, A. and Allen, J.D., Functional dissociation of the prefrontal cortex and hippocampus in timing behavior, Behav. Neurosci., 112, 1043-1047, 1998.

Dietrich, A., Frederick, D.L., and Allen, J.D., The effects of total and subtotal prefrontal cortical lesions on the timing ability of the rat, Psychobiology, 25, 191-201, 1997.

Ding, L. and Perkel, D.J., Dopamine modulates excitability of spiny neurons in the avian basal ganglia, J. Neurosci., 22, 5210-5218, 2002.

Doupe, A.J., A neural circuit specialized for vocal learning, Curr. Opin. Neurobiol., 116, 104-111, 1993.

Doupe, A.S. and Konishi, M., Song-selective auditory circuits in the vocal control system of the zebra finch, Proc. Natl. Acad. Sci. U.S.A., 88, 11339-11343, 1991.

Doupe, A.S. and Solis, M.M., Song and order-selective neurons develop in the songbird anterior forebrain during vocal learning, J. Neurobiol., 33, 694-709, 1997.

Durand, S.E., Tepper, J.M., and Cheng, M.E., The shell region of the nucleus ovoidalis: a subdivision of the avian auditory thalamus, J. Comp. Neurol., 323, 495-518, 1992.

Fames, M.A. and Perkel, D.J., A telencephalic nucleus essential for song learning contains neurons with physiological characteristics of both striatum and globus pallidus, J. Neurosci., 22, 3776-3787, 2002.

Fortune, E.S. and Margoliash, D., Cytoarchitectonic organization and morphology of cells of the field L complex in male zebra finches (Taenopygia guttata), J. Comp. Neurol., 325, 388-404, 1992.

Gerfen, C.R., The neostriatal mosaic: I. Compartmental organization of projections from the striatum to the substantia nigra in the rat, J. Comp. Neurol., 236, 454-476, 1985.

Gibbon, J., Scalar expectancy theory and Weber's law in animal timing, Psychol. Rev, 84, 279-325, 1977.

Gibbon, J., Church, R.M., and Meck, W.H., Scalar timing in memory, Ann. N.Y. Acad. Sci., 423, 52-77, 1984.

Groves, P.M., Garcia-Munoz, M., Linder, J.C., Manley, M.S., Martone, M.E., and Young, S.J., Elements of the intrinsic organization and information processing in the neostriatum, in Models of Information Processing in the Basal Ganglia, Houk, J.C., Davis, J.L., and Beiser, D.G., Eds., MIT Press, Cambridge, MA, 1995, pp. 51-96.

Haber, S.H., Fudge, J.L., and McFarlan, N.R., Striatonigrostriatal pathways in primate form an ascending spiral from the shell to the dorsolateral striatum, J. Neurosci., 20, 2369-2382, 2000.

Hahnloser, R.H.R., Kozhevnikov, A.A., and Fee, M.S., An explicit representation of time underlies the generation of neural sequences in a songbird, Nature, 419, 65-70, 2002.

Harding, C.F., Barclay, S.R., and Waterman, S.A., Changes in catecholamine levels and turnover rates in hypothalamic, vocal control, and auditory nuclei in male zebra finches during development, J. Neurobiol., 34, 329-346, 1998.

Hartshorne, C., The monotony threshold in singing birds, Auk, 83, 176-192, 1956.

Hessler, N.A. and Doupe, A.J., Singing related activity in a dorsal forebrain-basal ganglia circuit of adult zebra finches, J. Neurosci., 19, 10461-10481, 1999.

Hollerman, J.R. and Schultz, W., Dopamine neurons report an error in the temporal prediction of reward during learning, Nat. Neurosci, 1, 304-309, 1998.

Hoover, J.E. and Strick, P.L., The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde, transneuronal transport of herpes simplex virus type 1, J. Neurosci, 19, 1446-1463, 1999.

Houk, J.C., Information processing in modular circuits linking basal ganglia and cerebral cortex, in Models of Information Processing in the Basal Ganglia, Houk, J.C., Davis, J.L., and Beiser, D.G., Eds., MIT Press, Cambridge, MA, 1995, pp. 3-10.

Iyengar, S. and Bottjer, S.W., The role of auditory experience in the formation of neural circuits underlying vocal learning in zebra finches, J. Neurosci, 22, 946-958, 2002.

Jarvis, E.D., Mello, C.V., and Nottebohm, F., Associative learning and stimulus novelty influence the song-induced expression of an intermediate early gene in the canary forebrain, Learn.. Mem, 1995, 62-80, 1995.

Jarvis, E.D. and Nottebohm, F., Motor-driven gene expression, Proc. Natl. Acad. Sci. U.S.A., 94, 4097-4102, 1997.

Jarvis, E.D., Ribeiro, S., deSilva, M.L., Ventura, D., Viellard, J., and Mello, C., Behaviorally driven gene expression reveals song nuclei in hummingbird brain, Nature, 406, 628-632, 2000.

Joel, D. and Weiner, I., The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum, Neuroscience, 96, 451-474, 2000.

Karten, H.J., The organization of the avian telencephalon and some speculations on the phylogeny of the amniote telencephalon, Ann. N.Y. Acad. Sci, 167, 164-179, 1969.

Karten, H.J. and Dubbeldam, J.L., The organization and projections of the paleostriatal complex in the pigeon (Columbia liva), J. Comp. Neurol., 148, 61-90, 1973.

Kelley, R.M. and Strick, P.L., Retrograde transneuronal transport of rabies virus through basal-ganglia corticothalamic circuits of primates, Soc. Neurosci. Abstr., 25, 1925, 1999.

Kitt, C.A. and Brauth, S.E., Projections of the paleostriatum upon the midbrain tegmentum in the pigeon, Neuroscience, 6, 1551-1566, 1981.

Konishi, M. and Nottebohm, F., Experimental studies in the ontogeny of avian vocalizations, in Bird Vocalizations, Hinde, R.A., Ed., Cambridge University Press, London, 1969, pp. 29-48.

Krebs, J.R., The significance of song repertoires: the Beau-Geste hypothesis, Anim. Behav., 37, 266-292, 1977.

Kroodsma, D.E., Continuity and versatility in birdsong: support for the monotony threshold hypothesis, Nature, 274, 681-683, 1980.

Kroodsma, D.E. and Baylis, J.R., Appendix: a world survey of evidence for vocal learning in birds, in Acoustic Communication in Birds, Vol. 2, Kroodsma, D.E. and Miller, E.H., Eds., Academic Press, New York, 1982, pp. 311-337.

Lashley, K., The problem of serial order in behavior, in Cerebral Mechanisms of Behavior, Jeffres, L.A., Ed., John Wiley & Sons, New York, 1951, pp. 112-136.

Leak, T.M. and Gibbon, J., Simultaneous timing of multiple intervals: implications of the scalar property, J. Exp. Psychol. Anim. Behav. Process, 21, 3-19, 1995.

Leonardo, A. and Konishi, M., Decrystallization of adult birdsong by perturbation of auditory feedback, Nature, 399, 466-470, 1999.

Lewicki, M.S. and Konishi, M., Mechanisms underlying the temporal sensitivity of songbird forebrain neurons to temporal order, Proc. Natl. Acad. Sci. U.S.A., 92, 5582-5586, 1995.

Luo, M., Ding, L., and Perkel, D.J., An avian basal ganglia pathway essential for vocal learning forms a closed topographic loop, J. Neurosci, 21, 6836-6845, 2001.

Margoliash, D., Acoustic parameters underlying the responses of song-specific neurons in the white-crowned sparrow, J. Neurosci, 3, 1039-1057, 1983.

Margoliash, D., Preference for autogenous song by auditory neurons in a song system nucleus of the white-crowned sparrow, J. Neurosci., 6, 1643-1661, 1986.

Margoliash, D., Functional organization of forebrain pathways for song production and perception, J. Neurobiol., 33, 671-693, 1997.

Margoliash, D. and Fortune, E.S., Temporal and harmonic combination-sensitive neurons in the zebra finch's HVC, J. Neurosci, 12, 4309-4326, 1992.

Margoliash, D. and Konishi, M., Auditory representation of autogenous song in the songsystem of white-crowned sparrows, Proc. Natl. Acad. Sci. U.S.A., 82, 597-600, 1985.

Marler, P., A comparative approach to vocal learning: song development in white-crowned sparrows, J. Comp. Physiol. Psychol., 71, 1-25, 1970.

Marler, P., Categorical perception of a natural stimulus continuum: birdsong, Science, 244, 976-978, 1989.

Marler, P. and Peters, S., Subsong and plastic song: their role in the vocal learning process, in Acoustic Communication in Birds, Vol. 2, Kroodsma, D.E. and Miller, E.H., Eds., Academic Press, New York, 1982, pp. 25-50.

Marler, P. and Peters, S., The role of song phonology and syntax in vocal learning preferences in the song sparrow, Melospiza melodia, Ethology, 77, 125-149, 1988.

Matell, M.S. and Meck, W.H., Neuropsychological mechanisms of interval timing behavior, Bioessays, 22, 94-103, 2000.

McCasland, J.S., Interactions between auditory and motor activities in an avian song nucleus, J. Neurosci., 7, 23-39, 1987.

McGeorge, A.J. and Faull, R.L.M., The organization of the projection of the cerebral cortex to the striatum in the rat, Neuroscience, 29, 503-537, 1989.

Meck, W.H. and Church, R.M., Abstraction of temporal attributes, J. Exp. Psychol. Anim. Behav. Process., 8, 226-243, 1982.

Meck, W.H. and Church, R.M., Simultaneous temporal processing, J. Exp. Psychol. Anim. Behav. Process., 10, 1-29, 1984.

Meck, W.H., Church, R.M., Wenk, G.L., and Olton, D.S., Nucleus basalis magnocellularis and medial septal area lesions differentially impair temporal memory, J. Neurosci., 7, 3505-3511, 1987.

Medina, L. and Reiner, A., The efferent projections of the dorsal and ventral pallidal parts, of the pigeon basal ganglia, studied with biotynilated dextran amine, Neuroscience, 81, 773-802, 1997.

Mello, C.V. and Clayton, D.F., Song-induced ZENK gene expression in auditory pathways of songbird brain and its relation to the song control system, J. Neurosci, 14, 6652-6666, 1996.

Miall, C., The storage of time intervals using oscillating neurons, Neural Comput., 1, 359-371, 1989.

Middleton, F.A. and Strick, P.L., Basal ganglia and cerebellar loops: motor and cognitive circuits, Brain Res. Rev, 31, 236-250, 2000.

Muller, C.M. and Leppelsack, H.J., Feature extraction and tonotopic organization in the avian forebrain, Exp. Brain Res, 59, 587-599, 1985.

Nordeen, K.W. and Nordeen, E.J., Auditory feedback is necessary for the maintenance of stereotyped song in adult zebra finches, Behav. Neural Biol, 57, 58-66, 1992.

Nottebohm, F., The origins of vocal learning, Am. Naturalist, 106, 116-140, 1970.

Nottebohm, F., Stokes, T.M., and Leonard, C.M., Central control of song in the canary, Serinus Canaria, J. Comp. Neurol., 165, 457-486, 1976.

Okanoya, K. and Yamaguchi, A., Adult Bengalese finches (Lonchura striata var. domestica) require real-time auditory feedback to produce normal song syntax, J. Neurobiol., 33, 343-356, 1997.

Oorschot, D.E., Total number of neurons in the neostriatal, pallidal, subthlamic and substantia nigra nuclei of the rat basal ganglia: a stereological study using the Cavalieri and optical disector methods, J. Comp. Neurol., 366, 580-599, 1996.

Parent, A. and Cicchetti, F., The current model of the basal ganglia under scrutiny, Mov. Disord., 13, 199-202, 1998.

Podos, J., Peters, S., Rudnicky, T., Marler, P., and Nowicki, S., The organization of song repertoires in song sparrow: themes and variations, Ethology, 90, 89-106, 1992.

Puelles, L., Kuwana, E., Puelles, A., Bulfone, A., Shimamura, K., Keleher, J., Smiga, S., and Rubenstein, J.L.R., Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1, J. Comp. Neurol, 424, 409-438, 2000.

Reiner, A., Functional circuitry of the avian basal ganglia: implications for basal ganglia organization in stem amniotes, Brain Res. Bull, 57, 513-528, 2002.

Reiner, A., Medina, L., and Veenman, C.L., Structural and functional evolution of the basal ganglia in vertebrates, Brain Res. Rev, 28, 235-285, 1998.

Rescorla, R.A., Pavlovian Second Order Conditioning: Studies in Associative Learning, Erlbaum, Hillsdale, NJ, 1980.

Ribeiro, S., Cecchi, G.A., Magnasco, M.O., and Mello, C.V., Towards a song code: evidence for a syllabic representation in the canary brain, Neuron, 21, 359-371, 1998.

Riebel, K. and Slater, J.B., Song type switching in the chaffinch, Fringilla coelebs: timing or counting? Anim. Behav., 57, 655-661, 1999.

Rousseau, L. and Rousseau, R., Stop-reaction time and the internal clock, Percept. Psycho-phys, 58, 434-448, 1996.

Sasaki, A., Wetsel, W.C., Rodriguiz, R.M., and Meck, W.H., Timing of the acoustic startle response in mice: habituation and dishabituation as a function of the interstimulus interval, Int. J. Comp. Psychol., 14, 258-268, 2001.

Scharff, C. and Nottebohm, F., A comparative study of the behavioral deficits following lesions of various parts of the zebra finch song system: implications for vocal learning, J. Neurosci., 11, 2896-2913, 1991.

Scharff, C., Nottebohm, F., and Cynx, J., Conspecific and heterospecific song discrimination in male zebra finches with lesions in the anterior forebrain pathway, J. Neurobiol., 36, 81-90, 1998.

Schmidt, M.F. and Konishi, M., Gating of auditory responses in the vocal control system of awake songbirds, Nat. Neurosci., 1, 513-518, 1998.

Schultz, W., Predictive reward signal of dopamine neurons, J. Neurophysiol., 80, 1-27, 1998.

Schultz, W., Apicella, P., and Ljungberg, T., Responses in monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task, J. Neurosci., 13, 900-913, 1993.

Searcy, W.A., Nowicki, S., and Peters, S., Song types as fundamental units in vocal repertoires, Anim. Behav., 58, 37-44, 1999.

Smith-Fernendez, A., Pieau, C., Reperant, J., Edoardo, B., and Wassef, M., Expression of Emx-1 and Dlx-1 homeobox genes define three molecularly distinct domains in the telencepahlon of the mouse, chick, turtle, and frog embryos: implications for the evolution of telencephalic subdivisions in amniotes, Development, 125, 2099-2111, 1998.

Soha, J.A. and Marler, P., Vocal syntax development in the white-crowned sparrow (Zonot-richia leucophrys), J. Comp. Psychol, 115, 172-180, 2000.

Sossinka, R. and Bohner, J., Song types in the zebra finch Poephilia guttata castanotis, Z. Tierpsychol., 53, 123-132, 1980.

Stevenson, J., Reinforcing effects of chaffinch song, Anim. Behav, 15, 427-432, 1967.

Stevenson, J., Song as a reinforcer, in Bird Vocalizations, Hinde, R., Ed., Cambridge University Press, Cambridge, U.K., 1969, pp. 49-60.

Striedter, G.F., Homology in the nervous system: of characters, embryology, and levels of analysis, in Homology, Novartis Symposium, Bock, G.R. and Cardew, G., Eds., 222, 158-172, 1999.

Stripling, R., Kruse, A.A., and Clayton, D.F., Development of song responses in the zebra finch caudomedial neostriatum: role of genomic and electrophysiological activities, J. Neurobiol., 48, 163-180, 2001.

Stripling, R., Volman, S.F., and Clayton, D.F., Response modulation in the zebra finch neostriatum: relationship to nuclear gene regulation, J. Neurosci, 17, 3883-3893, 1997.

Swanson, L.W., Cerebral hemisphere regulation of motivated behavior, Brain Res., 886, 113-164, 2000.

Tchernichovski, O., Mitra, P., Lints, T., and Nottebohm, F., Dynamics of the vocal imitation process: how the zebra finch learns its song, Science, 291, 2564-2569, 2001.

Todt, D. and Hultsch, H., How songbirds deal with large amounts of serial information: retrieval rules suggest a hierarchical song memory, Biol. Cybern., 79,487-500, 1998.

Vates, G.E., Broome, B.M., Mello, C.V., and Nottebohm, F., Auditory pathways of caudal telencephalon and their relation to the song system of adult zebra finches (Taeniopygia guttata), J. Comp. Neurol, 366, 613-642, 1996.

Vates, G.E. and Nottebohm, F., Feedback circuitry within a song-learning pathway, Proc. Natl. Acad. Sci. U.S.A., 92, 5139-5143, 1995.

Veenman, C.L., Wild, J.M., and Reiner A., Organization of the avian "corticostriatal" projection system: a retrograde and anterograde pathway tracing study in pigeons, J. Comp. Neurol, 354, 87-126, 1995.

Vicario, D.S., Organization of the zebra finch song control system: 2. Functional-organization of outputs from nucleus robustus-archistriatalis, J. Comp. Neurol, 309, 486-494, 1991.

Wang, X.-J., Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory, J. Neurosci, 19, 9587-9603, 1999.

Webster, K.E., Cortico-striate relations in the albino rat, J. Anat., 95, 532-544, 1961.

Weisman, R., Brownlie, L., Olthof, M., Njegovan, C., Sturdy, C., and Mewhort, D., Timing and classifying brief acoustic stimuli by songbirds and humans, J. Exp. Psychol. Anim. Behav. Process., 25, 139-152, 1999.

White, N., Mnemonic functions of the basal ganglia, Curr. Opin. Neurobiol., 7, 164-169, 1998.

Wilson, C.J., The generation of natural firing patterns in neostriatal neurons, in Progress in Brain Research: Chemical Signaling in the Basal Ganglia, Arbuthnott, G.W. and Emson, P.C., Eds., Elesevier, Amsterdam, 1993, pp. 277-298.

Wilson, C.J., The contribution of cortical neurons to the firing patterns of spiny striatal neurons, in Models of Information Processing in the Basal Ganglia, Houk, J.C., Davis, J.L., and Beiser, D.G., Eds., MIT Press, Cambridge, MA, 1995, pp. 29-50.

Yu, A.C. and Margoliash, D., Temporal hierarchial control of singing in birds, Science, 273, 1871-1875, 1996.

0 0

Post a comment