References

Aiello, L.C., Brains and guts in human evolution: the expensive tissue hypothesis, Braz. J. Genet, 20, 141-148, 1997.

Amir, S. and Stewart, J., Resetting of the circadian clock by a conditioned stimulus, Nature, 379, 542-545, 1996.

Antoch, M.P., Song, E.-J., Chang, A.-M., Vitaterna, M.H., Zhao, Y., Wilsbacher, L.D., Sang-oram, A.M., King, D.P., Pinto, L.H., and Takahashi, J.S., Functional identification of the mouse circadian Clock gene by transgenic BAC rescue, Cell, 89, 655-667, 1997.

Arenz, C.L. and Leger D.W., The antipredator vigilance of adult and juvenile thirteen-lined ground squirrels (Sciuridae: Spermophilus tridecemlineatus): visual obstruction and simulated hawk attacks, Ethology, 103, 945-953, 1997.

Aronson, B., Johnson, K., Loros, J.J., and Dunlap, J.C., Negative feedback defining a circadian clock: autoregulation in the clock gene frequency, Science, 263, 1578-1584, 1994.

Artieda, J. and Pastor, M.A., Neurophysiological Mechanisms of Temporal Perception, Elsevier, Amsterdam, 1996.

Aschoff, J., Human perception of short and long time intervals: its correlation with body temperature and the duration of wake time, J. Biol. Rhythms, 13, 437-442, 1998.

Bading, H., Ginty, D.D., and Greenberg, M.E., Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways, Science, 260, 181-186, 1993.

Balsalobre, A., Clock genes in mammalian peripheal tissues, Cell Tissue Res., 309, 193-199, 2002.

Bateson, M. and Kacelnik, A., Risk-sensitive foraging: decision making in variable environments, in Cognitive Ecology, Dukas, R., Ed., University of Chicago Press, Chicago, 1998, pp. 297-342.

Beecher, M.D., Correlation of song learning and territory establishment strategies in the song sparrow, Proc. Natl. Acad. Sci. U.S.A., 91, 1450-1454, 1994.

Beecher, M.D., Campbell, S.E., and Nordby, J.C., The cognitive ecology of song communication and song learning in the song sparrow, in Cognitive Ecology, Dukas, R., Ed., University of Chicago Press, Chicago, 1998, pp. 175-199.

Belisle, C. and Cresswell, J., The effects of a limited memory capacity on foraging behavior, Theor. Popul. Biol., 52, 78-90, 1997.

Bell, W.J., Search Behavior: The Behavioral Ecology of Finding Resources, Chapman & Hall, New York, 1991.

Bent, A.C., Life Histories of North American Birds of Prey, Dover, New York, 1961.

Berg, H.C., Random Walks in Biology, Princeton University Press, Princeton, NJ, 1983.

Bitterman, M.E., Comparative analysis of learning, Science, 188, 699-708, 1975.

Bizo, L.A. and White, K.G., Timing with controlled reinforcer density: implications for models of timing, J. Exp. Psychol. Anim. Behav. Process., 2, 44-55, 1997.

Buhusi, C.V. and Meck, W.H., Differential effects of methamphetamine and haloperidol on the control of an internal clock, Behav. Neurosci, 116, 291-297, 2002.

Buhusi, C.V., Sasaki, A., and Meck, W.H., Temporal integration as a function of signal/gap intensity in rats (Rattus norvegicus) and pigeons (Columba livia), J. Comp. Psychol., in press.

Cantor, M.B., Information theory: a solution to two big problems in the analysis of behavior, in Advances in the Analysis of Behavior, Vol. 2, Predictability, Contiguity and Contingency, Harzem, P. and Zeiler, M., Eds., Wiley, New York, 1981, pp. 286-320.

Charnov, E.L., Optimal foraging, the marginal value theorem, Theor. Popul. Biol, 9, 129-136, 1976.

Cheng, K. and Roberts, W.A., Three psychophysical principles of timing in pigeons, Learn. Motiv., 22, 112-128, 1991.

Church, R.M. and Deluty, M.Z., The bisection of temporal intervals, J. Exp. Psychol. Anim. Behav. Process., 3, 216-228, 1977.

Church, R.M. and Gibbon, J., Temporal generalization, J. Exp. Psychol. Anim. Behav. Process, 8, 165-186, 1982.

Church, R.M., Meck, W.H., and Gibbon, J., Application of scalar timing theory to individual trials, J. Exp. Psychol. Anim. Behav. Process., 20, 135-155, 1994.

Churchland, P.S. and Sejnowski, T.J., The Computational Brain, MIT Press, Cambridge, MA, 1994.

Clayton, N.S. and Dickinson, A., Episodic-like memory during cache recovery by scrub jays, Nature, 395, 272-274, 1998.

Cody, M.L., Finch flocks in the Mohave Desert, Theor. Popul. Biol., 2, 142-148, 1971.

Colombo, M., Broadbent, N.J., Taylor, C.S., and Frost, N., The role of the avian hippocampus in orientation in space and time, Brain Res., 919, 292-301, 2001.

Cooper, L.D., Temporal factors in classical conditioning, Learn. Motiv., 22, 129-152, 1991.

Crosthwaite, S.K., Loros, J.J., and Dunlap, J.C., Light-induced resetting of a circadian clock is mediated by a rapid increase in frequency transcript, Cell, 81, 1003-1012, 1995.

Crystal, J.D., Circadian time perception, J. Exp. Psychol. Anim. Behav. Process., 27, 68-78, 2001.

Curio, E., The Ethology of Predation, Springer-Verlag, Berlin, 1976.

Czeisler, C.A., The effect of light on the human circadian pacemaker, in Circadian Clocks and Their Adjustment, Chadwick, D.J. and Ackrill, K., Eds., John Wiley & Sons, New York, 1995, pp. 254-290.

Daan, S., Adaptive daily strategies in behavior, in Biological Rhythms, Aschoff, J., Ed., Plenum Press, New York, 1981, pp. 275-298.

de Vaca, S.C., Brown, B.L., and Hemmes, N.S., Internal clock and memory processes in animal timing, J. Exp. Psychol. Anim. Behav. Process., 7, 59-69, 1994.

Decoursey, P.J. and Krulas, J.R., Behavior of SCN-lesioned chipmunks in natural habitat: a pilot study, J. Biol. Rhythms, 13, 229-244, 1997.

DeZazzo, J. and Tully, T., Dissection of memory formation: from behavioral pharmacology to molecular genetics, Trends Neurosci, 18, 212-218, 1995.

Dukas, R., Constraints on information processing and their effects on behavior, in Cognitive Ecology, Dukas, R., Ed., University of Chicago Press, Chicago, 1998, pp. 89-128.

Dunlap, J.C., Genetic and molecular analysis of circadian rhythms, Ann. Rev. Genet, 30, 579-601, 1996.

Dusenberry, D.B., Spatial sensing of stimulus gradients can be superior to temporal sensing for free-swimming bacteria, Biophys. J, 74, 2272-2277, 1998.

Dyer, F., Cognitive ecology of navigation, in Cognitive Ecology, Dukas R., Ed., University of Chicago Press, Chicago, 1998, pp. 201-260.

Edery, I., Rutila, J., and Rasbash, M., Phase shifting of the circadian clock by induction of the Drosophila period protein, Science, 263, 237-240, 1994.

Edmunds, L.N., Cellular and Molecular Bases of Biological Clocks, Springer-Verlag, New York, 1988.

Eskin, R.M. and Bitterman, M.E., Fixed-interval and fixed ratio performance in the fish as a function of prefeeding, Am. J. Psychol., 73, 417-423, 1960.

Ferster, C.B. and Skinner, B.F., Schedules of Reinforcement, Appleton-Century-Crofts, New York, 1957.

Fetterman, J.G. and Killeen, P.R., Adjusting the pacemaker, Learn. Motiv., 22, 226-252, 1991.

Fletcher, P.C., Frith, C.D., and Rugg, M.D., The functional neuroanatomy of episodic memory, Trends Neurosci., 20, 213-218, 1997.

Friedman, W.J., Memory for the time of past events, Psychol. Bull., 113, 44-66, 1993.

Getty, T. and Krebs, J.R., Lagging partial preferences for cryptic prey: a signal detection analysis of great tit foraging, Am. Naturalist, 125, 39-60, 1985.

Gibbon, J., Morrell, M., and Silver, R., Two kinds of timing in circadian incubation rhythm of ring doves, Am. J. Physiol., 247, R1083-R1087, 1984.

Gilbert, C., Visual control of cursorial prey pursuit by tiger beetles (Cicindelidae), J. Comp. Physiol. Sensory Neural Behav. Physiol., 181, 217-230, 1997.

Gould, J.L., Sensory bases of navigation, Curr. Biol., 8, R731-R738, 1998.

Grebe, T.W. and Stock, J., Bacterial chemotaxis: the five sensors of bacterium, Curr. Biol., 8, R154-R157, 1998.

Grossman, K.E., Continuous, fixed-ratio and fixed interval reinforcement in honey bees, J. Exp. Anal. Behav, 20, 105-109, 1973.

Ha, J.C., Lehner, P.N., and Farley, S.D., Risk-prone foraging behavior in captive grey jays, Perisoreus canadensis, Anim. Behav., 39, 91-96, 1990.

Hardin, P.E., Hall, J.C., and Rasbash, M., Circadian oscillations in period gene mRNA levels are transcriptionally regulated, Proc. Natl. Acad. Sci. U.S.A., 89, 11711-11715, 1992.

Harrison, A.A., Clearwater, Y.A., and McKay, C.P., The human experience in Antarctica: applications to life in space, Behav. Sci, 34, 253-271, 1989.

Hastings, M.H., Central clocking, Trends Neurosci., 20, 459-464, 1997.

Haykin, S., Neural Networks, Macmillan College Publishing Company, New York, 1994.

Hills, T.T. and Adler, F.R., Time's crooked arrow: rate-biased time perception and optimal foraging theory, Anim. Behav, 64, 589-597, 2002.

Hoagland, H., Pacemakers in Relation to Aspects of Behavior, Macmillan, New York, 1935.

Holtcamp, W.N., Grant, W.E., and Vinson, S.B., Patch use under predation hazard: effect of the red imported fire ant on deer mouse foraging behavior, Ecology, 78, 308-317, 1997.

Hooper, S.L., Transduction of temporal patterns by single neurons, Nat. Neurosci, 1, 720-726, 1998.

Ishijima, A. and Yanagida, T., Single molecule nanobioscience, Trends Biochem. Sci, 26, 438-444, 2001.

Iwasaki, K., Liu, D.W., and Thomas J.H., Genes that control a temperature-compensated ultradian clock in Caenorhabditis elegans, Proc. Natl. Acad. Sci. U.S.A., 92, 10317-10321, 1995.

Iwasaki, K. and Thomas, J.H., Genetics in rhythm, Trends Genet., 13, 111-115, 1997.

Jackson, P.A., Kesner, R.P., and Amann, K., Memory for duration: role of hippocampus and medial prefrontal cortex, Neurobiol. Learn. Mem, 70, 328-348, 1998.

Kacelnik, A., Central place foraging in starlings (Sturnus vulgaris): I. Patch residence time, J. Anim. Ecol, 53, 283-299, 1984.

Kareiva, P. and Odell, G., Swarms of predators exhibit "preytaxis" if individual predators use area-restricted search, Am. Naturalist, 130, 233-270, 1987.

Kesner, R.P., Neural mediation of memory for time: role of the hippocampus and medial prefrontal cortex, in Animal Cognition and Sequential Behavior: Behavioral, Biological, and Computational Perspectives, Fountain, S.B., Bunsey, M.D., Danks, J.H., and McBeath, M.K., Eds., Kluwer Academic, Boston, 2002, pp. 175-200.

Killeen, P.R., Palombo, G., Gottlob, L.R., and Beam, J., Bayesian analysis of foraging by pigeons (Columba livia), J. Exp. Psychol. Anim. Behav. Process., 22, 480-496, 1996.

King, D.P., Zhao, Y., Sangoram, A.M., Wilsbacher, L.D., Tanaka, M., Aantoch, M.P., Steeves, T.D.L., Vitaterna, M.H., Kornhauser, J.M., Lowrey, P.L., Turek, F.W., and Takahashi, J.S., Functional identification of the mouse circadian Clock gene by transgenic BAC rescue, Cell, 89, 655-667, 1997a.

King, D.P., Zhao, Y., Sangoram, A.M., Wilsbacher, L.D., Tanaka, M., Aantoch, M.P., Steeves, T.D.L., Vitaterna, M.H., Kornhauser, J.M., Lowrey, P.L., Turek, F.W., and Takahashi, J.S., Positional cloning of the mouse circadian Clock gene, Cell, 89, 641-653, 1997b.

Konopka, R.J. and Benzer, S., Clock mutants of Drosophila melanogaster, Proc. Natl. Acad. Sci. U.S.A., 68, 2112-2116, 1971.

Kowal, K., Familiar melodies seem shorter, not longer, when played backwards, Ann. N.Y. Acad. Sci., 423 , 610-611, 1984.

Krebs, J.R. and Kacelnik, A., Time horizons of foraging animals, Ann. N.Y. Acad. Sci., 423, 278-291, 1984.

Krebs, J.R., Sherry, D.F., Healy, S.D., Perry, V.H., and Vaccarino, A.L., Hippocampal specialization of food-storing birds, Proc. Natl. Acad. Sci. U.S.A., 89, 1388-1392, 1989.

Kyriacou, C.P., Greenacre, M.L., Ritchie, M.G., Peixoto, A.A., Shiels, G., and Hall, J.C., Genetic and molecular analysis of ultradian rhythms in Drosophila, in Ultradian Rhythms in Life Processes, Lloyd, D. and Rossi, R.L., Eds., Springer-Verlag, New York, 1992, pp. 89-105.

Lavie, P., Ultradian cycles in sleep propensity; or, Kleitman's BRAC revisited, in Ultradian Rhythms in Life Processes, Lloyd, D. and Rossi, R.L., Eds., Springer-Verlag, New York, 1992, pp. 284-302.

Liu, Y., Garceau, N.Y., Loros, J.J., and Dunlap, J.C., Thermally regulated translational control of FRQ mediates aspects of temperature responses in the Neurospora circadian clock, Cell, 89, 477-486, 1997.

Lloyd, M. and Dybas, H.S., The periodical cicada problem: I. Population ecology, Evolution, 20, 133-149, 1966.

Lloyd, D., Circadian and ultradian clock-controlled rhythms in unicellular microorganisms, Advances in Microbiol Physiology, 39, 291-338, 1998.

Loudon, A.S.I., Wayne, N.L., Krieg, R., Iranmanesh, A., Veldhuis, J.D., and Menaker, M., Ultradian endocrine rhythms are altered by a circadian mutation in the Syrian hamster, Endocrinology, 135, 712-718, 1994.

Machado, A., Learning the temporal dynamics of behavior, Psychol. Rev, 104, 241-265, 1997.

Maricq, A.V. and Church, R.M., The differential effects of haloperidol and methamphetamine on time estimation in the rat, Psychopharmacology, 79, 10-15, 1983.

Markram, H., Lubke, J., Frotscher, M., and Sakmann, B., Regulation of synaptic efficacy by coincidence of postsynaptic aps and epsps, Science, 275, 213-215, 1997.

Matell, M.S. and Meck, W.H., Neuropsychological mechanisms of interval timing behaviour, Bioessays, 22, 94-103, 2000.

Meck, W.H., Hippocampal function is required for feedback control of an internal clock's criterion, Behav. Neurosci, 102, 54-60, 1988.

Meck, W.H., Modality-specific circadian rhythmicities influence mechanisms of attention and memory for interval timing, Learn. Motiv., 22, 153-179, 1991.

Meck, W.H., Church, R.M., and Olton, D.S., Hippocampus, time, and memory, Behav. Neurosci, 98, 3-22, 1984.

Menaker, M., Commentary: what does melatonin do and how does it do it? J. Biol. Rhythms, 12, 532-534, 1997.

Michelsen, A., Larsen, O.N., and Sulrykke, A., Auditory processing of temporal cues in insect songs: frequency domain or time domain? in Time Resolution in Auditory Systems, Michelsen, A., Ed., Springer-Verlag, New York, 1985, pp. 3-27.

Milinski, M. and Parker, G.A., Competition for resources, in Behavioral Ecology, 3rd ed., Krebs, J.R. and Davies, N.B., Eds., Blackwell Scientific, Oxford, 1991, pp. 137-168.

Millar, A.J., Straume, M., Chory, J., Chua, N., and Kay, S.A., The regulation of circadian period by phototransduction pathways in Arabidopsis, Science, 267, 1163-1166, 1995.

Mistleberger, R.E., Circadian food-anticipatory activity: formal models and physiological mechanisms, Neurosci. Biobehav. Rev., 18, 171-195, 1993.

Mizumori, S.J.Y., LaVoie, A.M., and Kalyani, A., Redistribution of spatial representation in the hippocampus of aged rats performing a spatial memory task, Behav. Neurosci., 110, 1006-1016, 1996.

Moore, D., Angel, J.E., Cheeseman, I.M., Fahrbach, S.I., and Robinson, G.E., Timekeeping in the honeybee colony: integration of circadian rhythms and division of labor, Behav. Ecol. Sociobiol., 43, 147-160, 1998.

Moore, D., Siegfried, D., Wilson, R., and Rankin, M.A., The influence of time of day on the foraging behavior of the honeybee, Apis mellifera, J. Biol. Rhythms, 4, 305-325, 1989.

Morgan, L., Killeen, P.R., and Fetterman, J.G., Changing rates of reinforcement perturbs the flow of time, Behav. Process., 30, 259-272, 1993.

Okamura, H., Yamaguchi, S., and Yagita, K., Molecular machinery of the circadian clock in mammals, Cell Tissue Res., 309, 47-56, 2002.

Ono, T., Nishijo, H., Eifuku, S., Kobayashi, T., and Tamura, R., Conjunctive multiple stimuli-encoding in the hippocampal formation of rats and monkeys, in Brain Processes and Memory, Ishikawa, K., McGaugh, J.L., and Sakata, H., Eds., Elsevier, Amsterdam, 1995, pp. 187-201.

Paule, M.G., Meck, W.H., McMillan, D.E., Bateson, M., Popke, E.J., Chelonis, J.J., and Hinton, S.C., The use of timing behaviors in animals and humans to detect drug and/or toxicant effects, Neurotoxicol. Teratol., 21, 491-502, 1999.

Pavlov, I.P., Conditioned Reflexes, Oxford University Press, Oxford, 1927.

Port, R.F., Cummins, F., and McAuley, J.D., Naive time, temporal patterns, and human audition, in Mind as Motion, Port, R.F. and van Gelder, T., Eds., MIT Press, Cambridge, MA, 1995, pp. 339-372.

Portavella, M., Vargas, J.P., Torres, B., and Salas, C., The effects of telencephalic pallial lesions on spatial, temporal, and emotional learning in goldfish, Brain Res. Bull., 57, 397-399, 2002.

Power, J.M., Ringo, J.M., and Dowse, H.B., The effects of period mutations and light on the activity rhythms of Drosophila melanogaster, J. Biol. Rhythms, 10, 267-280, 1995.

Ralph, M.R., Foster, R.G., Davis, F.C., and Menaker, M., Transplanted suprachiasmatic nucleus determines circadian period, Science, 247, 975-978, 1990.

Ralph, M.R. and Hurd, M.W., Circadian pacemakers in vertebrates, in Circadian Clocks and Their Adjustment, Chadwick, D.J. and Ackrill, K., Eds., John Wiley & Sons, New York, 1995, pp. 67-81.

Real, L. and Caraco, T., Risk and foraging in stochastic environments, Ann. Rev. Ecol. Syst., 17, 371-390, 1986.

Rensing, L., Kallies, A., Gebauer, G., and Mohsenzadeh, S., The effects of temperature change on the circadian clock of neurospora, in Circadian Clocks and Their Adjustment, Chadwick, D.J. and Ackrill, K., Eds., John Wiley & Sons, New York, 1995, pp. 26-41.

Richelle, M. and Lejeune, H., Time in Animal Behavior, Pergamon Press, Oxford, 1980.

Roberts, S., Isolation of an internal clock, J. Exp. Psychol. Anim. Behav. Process, 7, 242-268, 1981.

Roberts, S., The mental representation of time: uncovering a biological clock, in Methods, Models, and Conceptual Issues: An Invitation to Cognitive Science, Vol. 4, Scarborough, D. and Sternberg, S., Eds., MIT Press, Cambridge, MA, 1998, pp. 53-106.

Rosato, E., Peixoto, A.A., Gallippi, A., Kyriacou, C.P., and Costa, R., Mutational mechanisms, phylogeny, and evolution of a repetitive region within a clock gene of Drosophila melanogaster, J. Mol. Evol., 42, 392-408, 1996.

Rosenwasser, A.M., Rats remember the circadian phase of feeding, Ann. N.Y. Acad. Sci., 423, 634-635, 1984.

Rozin, P., Temperature independence of an arbitrary temporal discrimination in the goldfish, Science, 149, 561-564, 1965.

Ruby, N.F., Dark, J., Heller, H.C., and Zucker, I., Albation of suprachiasmatic nucleus alters timing of hibernation in ground squirrels, Proc. Natl. Acad. Sci. U.S.A., 93, 9864-9868, 1996.

Saunders, D.S., Insect Clocks, Pergamon Press, Oxford, 1971.

Sawyer, L.A., Hennessy, M.J., Peixoto, A.A., Rosato, E., Parkinson, H., Costa, R., and Kyriacou, P.C., Natural variation in a Drosophila clock gene and temperature compensation, Science, 278, 2117-2120, 1997.

Schmidt, J.M. and Pak, G.A., The effect of temperature on progeny allocation and short interval timing in a parasitoid wasp, Physiol. Entomol., 16, 345-353, 1991.

Schoener, T.W., Nonsynchronous spatial overlap of lizards in patchy habitats, Ecology, 51, 408-418, 1970.

Schoener, T.W., Resource partitioning in ecological communities, Science, 185, 127-185, 1974.

Seeley, T.D., The Wisdom of the Hive: The Social Physiology of Honey Bee Colonies, Harvard University Press, Cambridge, MA, 1995.

Segall, J.E., Block, S.M., and Berg, H.C., Temporal comparisons in bacterial chemotaxis, Proc. Natl. Acad. Sci. U.S.A., 83, 8987-8991, 1983.

Shigeyoshi, Y., Taguchi, K., Yamamoto, S., Takekida, S., Yan, L., Tei, H., Moriya, T., Shibata, S., Loros, J.J., Dunlap, J.C., and Okamura, H., Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mper1 transcript, Cell, 91, 1043-1053, 1997.

Silver, R. and Bittman, E.L., Time sharing by parent doves, Ann. N. Y. Acad. Sci., 423, 488-514, 1984.

Silvertown, J.W., The evolutionary ecology of mast seeding in trees, Biol. J. Linnean Soc., 14, 235-250, 1980.

Staddon, J.E.R. and Higa, J.J., Time and memory: towards a pacemaker-free theory of interval timing, J. Exp. Anal. Behav., 71, 215-251, 1999.

Stanewsky, R., Clock mechanisms in Drosophila, Cell Tissue Res., 309, 11-26, 2002.

Stephens, D.W., The logic of risk-sensitive foraging preferences, Anim. Behav, 29, 628-629, 1980.

Stephens, D.W. and Krebs, J.R., Foraging Theory, Princeton University Press, Princeton, NJ, 1986.

Stock, J.B. and Surette, M.G., Chemotaxis, in Escherichia coli and Salmonella: Cellular and Molecular Biology, Neidhardt, F.C., Ed., ASM Press, Washington, D.C., 1996, pp. 1103-1129.

Takahashi, J.S., Molecular neurobiology and genetics of circadian rhythms in mammals, Ann. Rev. Neurosci., 18, 531-553, 1995.

Takai, Y., Sasaki, T., and Matozaki, T., Small GTP-binding proteins, Physiol. Rev., 81, 153-208, 2001.

Talton, L.E., Higa, J.J., and Staddon, J.E.R., Interval schedule performance in the goldfish Carassius auratus, Behav. Process., 45, 193-206, 1999.

Thompson, R.F., Berger, T.W., Berry, S.D., Clark, G.A., Kettner, R.N., LaVond, D.G., Mauk, M.D., McCormick, D.A., Solomon, P.R., and Weisz, D.J., Neuronal substrates of learning and memory: hippocampus and other structures, in Conditioning: Representation of Involved Neural Functions, Woody, C.D., Ed., Plenum Press, New York, 1982, pp. 1103-1129.

Toh, K.L., Jones, C.R., He, Y., Eide, E.J., Hinz, W.A., Virshup, D.M., Ptacek, L.J., and Fu, Y.H., An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome, Science, 9, 1040-1043, 2001.

Treisman, M., Cook, N., Naish, P.L.N., and MacCrone, J.K., The internal clock: electroencephalographs evidence for oscillatory processes underlying time perception, Q. J. Exp. Psychol., 47, 241-289, 1994.

Tulving, E., Episodic and semantic memory, in Organization of Memory, Tulving, E. and Donaldson, W., Eds., Academic Press, New York, 1972, pp. 381-403.

Valone, T.J. and Brown, J.S., Measuring patch assessment abilities of desert granivores, Ecology, 70, 1800-1810, 1989.

Wagner, S., Castel, M., Gainer, H., and Yarom, Y., GABA in the mammalian suprachiasmatic nucleus and its role in diurnal rhythms, Nature, 387, 598-603, 1997.

Wallenstein, G.V., Eichenbaum, H., and Hasselmo, M.E., The hippocampus as an associator of discontiguous events, Trends Neurosci, 21, 317-323, 1998.

Wallenstein, G.V. and Hasselmo, M.E., Gabaergic modulation of hippocampal population activity: sequence learning, place field development, and the phase precession effect, J. Neurophysiol., 78, 393-408, 1997.

Wearden, J.H., Do humans possess an internal clock with scalar properties? Learn. Motiv., 22, 59-83, 1991.

Wearden, J.H. and Penton-Voak, I.S., Feeling the heat: body temperature and the rate of subjective time, revisited, Q. J. Exp. Psychol. B, 48, 129-141, 1995.

Wever, R.A., The sleep-wake threshold in human circadian rhythms as a determinant of ultradian rhythms, in Ultradian Rhythms in Life Processes, Lloyd, D. and Rossi, R.L., Eds., Springer-Verlag, New York, 1992, pp. 307-322.

White, J., Tobin, T.R., and Bell, W.J., Local search in the housefly Musca domestica after feeding on sucrose, J. Insect Physiol., 30, 477-487, 1984.

Wilson, E.O., The Insect Societies, The Belknap Press, Cambridge, UK, 1971.

Winfree, A.T., The Geometry of Biological Time, Springer-Verlag, New York, 1980.

Young, B. and McNaughton, N., Common firing patterns of hippocampal cells in a differential reinforcement of low rates of response schedule, J. Neurosci, 20, 7043-7051, 2000.

Yu, Q., Jacquir, A.C., Citri, Y., and Colot, H.M., Molecular mapping of point mutations in the period gene that stop or speed up biological clocks in Drosophila melanogaster, Proc. Natl. Acad. Sci. U.S.A., 84, 784-788, 1987.

Bee Keeping

Bee Keeping

Make money with honey How to be a Beekeeper. Beekeeping can be a fascinating hobby or you can turn it into a lucrative business. The choice is yours. You need to know some basics to help you get started. The equipment needed to be a beekeeper. Where can you find the equipment you need? The best location for the hives. You can't just put bees in any spot. What needs to be considered when picking the location for your bees?

Get My Free Ebook


Post a comment