References

Aizman, O., Brismar, H., Uhlen, P., Zettergren, E., Levey, A.I., Forssberg, H., Greengard, P., and Aperia, A., Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neo-striatal neurons, Nat. Neurosci., 3, 226-230, 2000.

Albin, R.L., Young, A.B., and Penney, J.B., The functional anatomy of basal ganglia disorders, Trends Neurosci., 12, 366-375, 1989.

Alexander, G.E. and Crutcher, M.D., Functional architecture of basal ganglia circuits: neural substrates of parallel processing, Trends Neurosci., 13, 266-271, 1990.

Ardouin, C., Pillon, B., Peiffer, E., Bejjani, P., Limousin, P., Damier, P., Arnulf, I., Benabid, A.L., Agid, Y., and Pollak, P., Bilateral subthalamic or pallidal stimulation for Parkinson's disease affects neither memory nor executive functions: a consecutive series of 62 patients, Ann. Neurol., 46, 217-223, 1999.

Aultman, J.M. and Moghaddam, B., Distinct contributions of glutamate and dopamine receptors to temporal aspects of rodent working memory using a clinically relevant task, Psychopharmacologia, 153, 353-364, 2001.

Bejjani, B., Damier, P., Arnulf, I., Bonnet, A.M., Vidailhet, M., Dormont, D., Pidoux, B., Cornu, P., Marsault, C., and Agid, Y., Pallidal stimulation for Parkinson's disease: two targets? Neurology, 49, 1564-1569, 1997.

Bejjani, B.P., Damier, P., Arnulf, I., Papadopoulos, S., Bonnet, A.M., Vidailhet, M., Agid, Y., Pidoux, B., Cornu, P., Dormont, D., and Marsault, C., Deep brain stimulation in Parkinson's disease: opposite effects of stimulation in the pallidum, Mov. Disord., 13, 969-970, 1998.

Benabid, A., Benazzous, A., and Pollak, P., Mechanisms of deep brain stimulation, Mov. Disord., 17 (Suppl. 3), 73-74, 2002.

Benabid, A.L, Benazzouz, A., Hoffmann, D., Limousin, P., Krack, P., and Pollak, P., Long-term electrical inhibition of deep brain targets in movement disorders, Mov. Disord., 13 (Suppl. 3), 119-125, 1998.

Benabid, A.L., Pollak, P., Gervason, C., Hoffmann, D., Gao, D.M., Hommel, M., Perret, J.E., and de Rougemont, J., Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus, Lancet, 337, 403-406, 1991.

Benazzouz, A., Gao, D.M., Ni, Z.G., Piallat, B., Bouali-Benazzouz, R., and Benabid, A.L., Effect of high-frequency stimulation of the subthalamic nucleus on the neuronal activities of the substantia nigra pars reticulata and ventrolateral nucleus of the thalamus in the rat, Neuroscience, 99, 289-295, 2000.

Benazzouz, A. and Hallett, M., Mechanism of action of deep brain stimulation, Neurology, 55, 13-16, 2000.

Benazzouz, A., Piallat, B., Pollak, P., and Benabid, A.L., Responses of substantia nigra reticulata and globus pallidus complex to high frequency stimulation of the subtha-lamic nucleus in rats: electro-physiological data, Neurosci. Lett, 189, 77-80, 1995.

Bergman, H. and Deuschl, G., Pathophysiology of Parkinson's disease: from clinical neurology to basic neuroscience and back, Mov. Disord., 17 (Suppl. 3), 28-40, 2002.

Bergman, H., Wichmann, T., and DeLong, M.R., Reversal of experimental parkinsonism by lesions of the subthalamic nucleus, Science, 249, 1436-1438, 1990.

Betarbet, R., Turner, R., Chockkan, V., DeLong, M.R., Allers, K.A., Walters, J., Levey, A.I., and Greenamyre, J.T., Dopaminergic neurons intrinsic to the primate striatum, J. Neurosci, 17, 6761-6168, 1997.

Beurrier, C., Bioulac, B., Audin, J., and Hammond, C., High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons, J. Neurophys-iol, 85, 1351-1356, 2001.

Bevan, M.D., Booth, P.A., Eaton, S.A., and Bolam, J.P., Selective innervation of neostriatal interneurons by a subclass of neuron in the globus pallidus of the rat, J. Neurosci., 18, 9438-9452, 1998.

Bikson, M., Lian, J., Hahn, P.J., Stacey, W.C., Sciortino, C., and Durand, D.M., Suppression of epileptiform activity by high frequency sinusoidal fields in hippocampal slices, J. Physiol. Lond., 531, 181-191, 2001.

Blanchet, P.J., Konitsiotis, S., Whittemore, E.R., Zhou, Z.L., Woodward, R.M., and Chase, T.N., Differing effects of N-methyl-D-aspartate receptor subtype selective antagonists on dyskinesias in levodopa-treated 1-methyl-4-phenyl-tetrahydropyridine monkeys, J. Pharmacol. Exp. Ther., 290, 1034-1040, 1999.

Bolam, J.P., Hanley, J.J., Booth, P.A., and Bevan, M.D., Synaptic organisation of the basal ganglia, J. Anat., 96, 527-542, 2000.

Boraud, T., Bezard, E., Bioulac, B., and Gross, C., High frequency stimulation of the internal globus pallidus (GPi) simultaneously improves parkinsonian symptoms and reduces the firing frequency of GPi neurons in the MPTP-treated monkey, Neurosci. Lett., 215, 17-20, 1996.

Brotchie, J.M., The neural mechanisms underlying levodopa-induced dyskinesia in Parkinson's disease, Ann. Neurol., 47 (Suppl. 1), 105-114, 2000.

Brown, R.G. and Marsden, C.D., Dual task performance and processing resources in normal subjects and patients with Parkinson's disease, Brain, 114, 215-231, 1991.

Calabresi, P., Maj, R., Pisani, A., Mercuri, N.B., and Bernardi, G., Long-term synaptic depression in the striatum: physiological and pharmacological characterization, J. Neurosci, 12, 4224-4233, 1992.

Calabresi, P., Pisani, A., Mercuri, N.B., and Bernardi, G., The corticostriatal projection: from synaptic plasticity to dysfunctions of the basal ganglia, Trends Neurosci., 19, 19-24, 1996.

Carlsson, M. and Svensson, A., Interfering with glutamatergic neurotransmission by means of NMDA antagonist administration discloses the locomotor stimulatory potential of other transmitter systems, Pharmacol. Biochem. Behav., 36, 45-50, 1990.

Catania, A.C., Reinforcement schedules and psychophysical judgments: a study of some temporal properties of behavior, in The Theory of Reinforcement Schedules, Schoe-nfeld, W.N., Ed., Appleton-Century-Croft, New York, 1970, pp. 1-42.

Chase, T.N. and Oh, J.D., Striatal dopamine- and glutamate-mediated dysregulation in experimental parkinsonism, Trends Neurosci., 23 (Suppl. S), 86-91, 2000.

Chase, T.N., Oh, J.D., and Konitsiotis, S., Antiparkinsonian and antidyskinetic activity of drugs targeting central glutamatergic mechanisms, J. Neurol., 247 (Suppl. 2), 36-41, 2000.

Chesselet, M.F. and Delfs, J.M., Basal ganglia and movement disorders: an update, Trends Neurosci, 19, 417-422, 1996.

Crossman, A.R., Neural mechanisms in disorders of movement, Comp. Biochem. Physiol., 93A, 141-149, 1989.

Damier, P., Hirsch, E.C., Agid, Y., and Graybiel, A.M., The substantia nigra of the human brain: I. Nigrosomes and the nigral matrix, a compartmental organization based on calbindin D(28K) immunohistochemistry, Brain, 122, 1421-1436, 1999.

DeLong, M.R., Primate models of movement disorders of basal ganglia origin, Trends Neurosci, 13, 281-285, 1990.

Dostrovsky, J.O. and Lozano, A.M., Mechanisms of deep brain stimulation, Mov. Disord., 17 (Suppl. 3), 63-68, 2002.

Falkenburger, B.H., Barstow, K.L., and Mintz, I.M., Dendrodentic inhibition through reversal of dopamine transport, Science, 293, 2465-2470, 2001.

Filion, M., Tremblay, L., and Bedard, P.J., Effects of dopamine agonists on the spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism, Brain Res, 547, 152-161, 1991.

Fredriksson, A., Danysz, W., Quack, G., and Archer, T., Co-administration of memantine and amantadine with sub/suprathreshold doses of L-Dopa restores motor behaviour of MPTP-treated mice, J. Neural Transm., 108, 167-187, 2001.

Gibbon, J. and Church, R.M., Sources of variance in an information processing theory of timing, in Animal Cognition, Roitblat, H.L., Bever, T.G., and Terrace, H.S., Eds., Erlbaum, Hillsdale, NJ, 1984, pp. 465-488.

Gibbon, J., Church, R.M., and Meck, W.H., Scalar timing in memory, Ann. N.Y. Acad. Sci., 423, 52-77, 1984.

Gibbon, J. and Malapani, C., Neural basis of timing and time perception, in Encyclopedia of Cognitive Science, Nature Publishing Group, London, in press.

Gibbon, J., Malapani, C., Dale, C., and Gallistel, C.R., Toward a neurobiology of temporal cognition: advances and challenges, Curr. Opin. Neurobiol., 7, 170-184, 1997.

Gillies, A. and Arbuthnott, G., Computational models of the basal ganglia, Mov. Disord., 15, 762-770, 2000.

Goldberg, J.A., Maraton, S., Boraud, T., Vaadia, E., and Bergman, H., The Discharge Synchrony of Neurons in the Primary Motor Cortex Increases in the Akinetic MPTP Treated Vervet Monkey, abstract presented at the VIIth meeting of the International Basal Ganglia Society (IBAGS), Waitangi, New Zealand, February 2001.

Graybiel, A.M., The basal ganglia and chunking of action repertoires, Neurobiol. Learn. Mem., 70, 119-136, 1998.

Greengard, P., The neurobiology of slow synaptic transmission, Science, 294, 1024-1030, 2001.

Harrington, D.L., Haaland, K.Y., and Hermanowicz, N., Temporal processing in the basal ganglia, Neuropsychology, 12, 3-12, 1998.

Hauber, W. and Lutz, S., Dopamine D1 or D2 receptor blockade in the globus pallidus produces akinesia in the rat, Behav. Brain Res., 106, 143-150, 1999a.

Hauber, W. and Lutz, S., Blockade of dopamine D2, but not of D1 receptors in the rat globus pallidus induced Fos-like immunoreactivity in the caudate-putamen, substantia nigra and entopeduncular nucleus, Neurosci. Lett., 271, 73-76, 1999b.

Herrero, M.T., Levy, R., Ruberg, M., Javoy-Agid, F., Luquin, M.R., Agid, Y., Hirsch, E.C., and Obeso, J.A., Glutamic acid decarboxylase mRNA expression in medial and lateral pallidal neurons in the MPTP-treated monkey and patients with Parkinson's disease, Adv. Neurol., 69, 209, 1996a.

Herrero, M.T., Levy, R., Ruberg, M., Luquin, M.R., Villares, J., Guillen, J., Faucheux, B., Javoy-Agid, F., Guridi, J., Agid, Y., Obeso, J.A., and Hirsch, E.C., Consequence of nigrostriatal denervation and L-dopa therapy on the expression of glutamic acid decarboxylase messenger RNA in the pallidum, Neurology, 47, 219-224, 1996b.

Hinton, S.C. and Meck, W.H., How time flies: functional and neural mechanisms of interval timing, in Time and Behaviour: Psychological and Neuro-behavioural Analyses, Vol. 120, Bradshaw, C.M. and Szabadi, E., Eds., Elsevier, New York, 1997, pp. 409-457.

Ivry, R.B., The representation of temporal information in perception and motor control, Curr. Opin. Neurobiol., 6, 851-857, 1996.

Jahanshahi, M., Ardouin, C., Brown, R.G., Rothwell, J.C., Obeso, J., Albanese, A., Rodriguez-Oroz, M.C., Moro, E., Benabid, A.L., Pollak P., and Limousin-Dowsey, P., The impact of deep brain stimulation on executive function in Parkinson's disease, Brain, 123, 1142-1154, 2000.

Jahanshahi, M., Brown, R.G., and Marsden, C.D., The effect of withdrawal of dopaminergic medication on simple and choice reaction time and the use of advance information in Parkinson's disease, J. Neurol. Neurosurg. Psychiatry, 55, 1168-1176, 1992.

Kita, H., Tokuno, H., and Nambu, A., Monkey globus pallidus external segment neurons projecting to the neostriatum, Neuroreport, 10, 1467-1472, 1999.

Klockgether, T. and Turski, L., Toward an understanding of the role of glutamate in experimental parkinsonism: agonist-sensitive sites in the basal ganglia, Ann. Neurol, 34, 585-593, 1993.

Lange, K.W., Kornhuber, J., and Riederer, P., Dopamine/glutamate interactions in Parkinson's disease, Neurosci. Biobehav. Rev, 21, 393-400, 1997.

Lenz, F.A., Suarez, J.I., Metman, L.V., Reich, S.G., Karp, B.I., Hallet, T.M., Rowland, L.H., and Dougherty, P.M., Pallidal activity during dystonia: somatosensory reorganisation and changes with severity, J. Neurol. Neurosurg. Psychiatry, 65, 767-770, 1998.

Levy, R., Hazrati, L.N., Herrero, M.T., Vila, M, Hassani, O.K., Mouroux, M., Ruberg, M., Asensi, H., Agid, Y., Feger, J., Obeso, J.A., Parent, A., and Hirsch, E.C., Re-evaluation of the functional anatomy of the basal ganglia in normal and Parkinsonian states, Neuroscience, 76, 335-343, 1997.

Limousin, P., Krack, P., Pollak, P., Benazzouz, A., Ardouin, C., Hoffmann, D., and Benabid, A.L., Electrical stimulation of the subthalamic nucleus in advanced Parkinson's disease, N. Engl. J. Med, 339, 1105-1111, 1998.

Limousin, P., Pollak, P., Benazzouz, A., Hoffmann, D., Broussolle, E., Perret, J.E., and Benabid, A.L., Bilateral subthalamic nucleus stimulation for severe Parkinson's disease, Mov. Disord, 10, 672-674, 1995a.

Limousin, P., Pollak, P., Benazzouz, A., Hoffmann, D., Le Bas, J.F., Broussolle, E., Perret, J.E., and Benabid, A.L., Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation, Lancet, 345, 91-95, 1995b.

Lombardi, W.J., Gross, R.E., Trepanier, L.L., Lang, A.E., Lozano, A.M., and Saint-Cyr, J.A., Relationship of lesion location to cognitive outcome following microelectrode-guided pallidotomy for Parkinson's disease: support for the existence of cognitive circuits in the human pallidum, Brain, 123, 746-758, 2000.

Malapani, C., Deweer, B., and Gibbon, J., Separating storage from retrieval dysfunction of temporal memory in Parkinson's disease, J. Cognit. Neurosci, 14, 311-322, 2002a.

Malapani, C., Dubois, B., Rancurel, G., and Gibbon, J., Cerebellar dysfunctions of temporal processing in the seconds range in humans, Neuroreport, 9, 3907-3912, 1998a.

Malapani, C. and Fairhurst, S., Scalar timing in animals and humans, Learn. Motiv., 33, 156-176, 2002.

Malapani, C., Likhtik, D., Deweer., B.P., Benabid, F., Agid, Y., and Gibbon, J., Temporal memory retrieval is improved by deep brain stimulation in the subthalamic nucleus in Parkinson's disease, Mov. Disord., submitted.

Malapani, C., Pillon, B., Dubois, B., and Agid, Y., Impaired simultaneous cognitive task performance in Parkinson's disease: a dopamine-related dysfunction, Neurology, 44, 319-326, 1994.

Malapani, C., Rakitin, B., Levy, R., Meck, W.H., Deweer, B., Dubois, B., and Gibbon, J., Coupled temporal memories in Parkinson's disease: a dopamine-related dysfunction, J. Cognit. Neurosci., 10, 316-331, 1998b.

Malapani, C., Rakitin, B.C., Dube, K., Lobo, S., and Fairhurst, S., Disambiguating the role of cognitive strategy versus memory updating in an age-related time production deficit, Cognit. Neurosci. Meet. Abstr, 30, 2002b.

Malapani, C., Rakitin, B.C., Fairhurst, S., and Gibbon, J., Neurobiology of temporal memory, J. Cognit. Process., in press.

Marsden, C.D. and Obeso, J.A., The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson's disease, J. Neurol., 117, 877-897, 1994.

Matell, M.S. and Meck, W.H., Neuropsychological mechanisms of interval timing behaviour, Bioessays, 22, 94-103, 2000.

Matell, M.S. and Meck, W.H., Cortico-striatal circuits and interval timing: coincidence-detection of oscillatory processes, Behav. Neurosci, Cog. Brain Res., in press.

Meck, W.H., Affinity for the dopamine D2 receptor predicts neuroleptic potency in decreasing the speed of an internal clock, Pharmacol. Biochem. Behav, 25, 1185-1189, 1986.

Meck, W.H., Neuropharmacology of timing and time perception, Cognit. Brain Res., 3, 227-242, 1996.

Miall, C., The storage of time intervals using oscillating neurons, Neural Comput., 1, 354-371, 1989.

Miall, R.C., Models of neural timing, in Time, Internal Clocks and Movement, Vol. 115, Pastor, M.A. and Artieda, J., Eds., Elsevier/North-Holland, Amsterdam, 1996, pp. 69-94.

Miller, W.C. and DeLong, M.R., Altered tonic activity of neurons in the globus pallidus and subthalamic nucleus in the primate MPTP model of parkinsonism, in The Basal Ganglia II, Carpenter, M.B. and Jayaraman, A., Eds., Plenum, New York, 1987, pp. 415-427.

Mitchell, I.J., Cross, A.J., Sambrook, M.A., and Crossman, A.R., Neural mechanisms mediating 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in the monkey: relative contribution of the striatopallidal and striatonigral pathways are suggested by 2-deoxyglucose uptake, Neurosci. Lett, 63, 61-65, 1986.

Mitchell, I.J., Hughes, N., Carroll, C.B., and Brotchie, J.M., Reversal of parkinsonian symptoms by intrastriatal and systemic manipulations of excitatory amino acid and dopam-ine transmission in the bilateral 6-OHDA lesioned marmoset, Behav. Pharmacol., 6, 492-507, 1995.

Molinuevo, J.L., Valldeoriola, F., Tolosa, E., Rumia, J., Valls-Sole, J., Roldan, H., and Ferrer, E., Levodopa withdrawal after bilateral subthalamic nucleus stimulation in advanced Parkinson disease, Arch. Neurol., 57, 983-988, 2000.

Nash, J.E. and Brotchie, J.M., Characterisation of striatal NMDA receptors involved in the generation of parkinsonian symptoms: intrastriatal microinjection studies in the 6-OHDA-lesioned rat, Mov. Disord., in press.

Nash, J.E., Fox, S.H., Henry, B., Hill, M.P., Peggs, D., McGuire, S., Maneuf, Y., Hille, C., Brotchie, J.M., and Crossman, A.R., Antiparkinsonian actions of ifenprodil in the MPTP-lesioned marmoset model of Parkinson's disease, Exp. Neurol., 165, 136-142, 2000.

Ni, Z.G., Bouali-Benazzouz, R., Gao, D.M., Benabid, A.L., and Benazzouz, A., Intrasubtha-lamic injection of 6-hydroxydopamine induces changes in the firing rate and pattern of subthalamic nucleus neurons in the rat, Synapse, 40, 145-153, 2001.

Obeso, J.A., Rodriguez, M.C., and DeLong, M.R., Basal ganglia pathophysiology: a critical review, Adv. Neurol., 74, 3-18, 1997.

Obeso, J.A., Rodriguez-Oroz, M.C., Rodriguez, M., DeLong, M.R., and Olanow, C.W., Pathophysiology of levodopa-induced dyskinesias in Parkinson's disease: problems with the current model, Ann. Neurol, 47 (Suppl. 1), 22-34, 2000.

Pahapill, P.A. and Lozano, A.M., The pedunculopontine nucleus and Parkinson's disease, Brain, 123, 1767-1783, 2000.

Parent, A. and Cicchetti, F., The current model of basal ganglia organization under scrutiny, Mov. Disord., 13, 199-202, 1998.

Pillon, B., Neuropsychological assessment for management of patients with deep brain stimulation, Mov. Disord., 17 (Suppl. 3), 116-122, 2002.

Pillon, B., Ardouin, C., Damier, P.H., Krack, P., Houeto, J.L., Klinger, H., Bonnet, A.M., Pollak, P., Benabid, A.L., and Agid, Y., Neuropsychological changes between "off' and "on" STN or GPi stimulation in Parkinson's disease, Neurology, 55, 411-418, 2000.

Pillon, B., Michon, A., Malapani, C., Agid, Y., and Dubois, B., Are explicit memory disorders of progressive supranuclear palsy related to damage of striato-frontal circuits? Comparison with Alzheimer's, Parkinson's, and Huntington's diseases, Neurology, 44, 1264-1270, 1994.

Plenz, D. and Kital, S., A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus, Nature, 400, 677-682, 1999.

Pollak, P., Fraix, V., Krack, P., Moro, E., Mendes, A., Chabardes, S., Koudsie, A., and Benabid, A.L., Treatment results: Parkinson's disease, Mov. Disord., 17 (Suppl. 3), 75-83, 2002.

Rakitin, B.C., Gibbon, J., Penney, T.B., Malapani, C., Hinton, S.C., and Meck, W.H., Scalar expectancy theory and peak-interval timing in humans, J. Exp. Psychol. Anim. Behav. Process, 24, 15-33, 1998.

Rakitin, B.C., Stern, Y., and Malapani, C., Timing deficits in aging are duration-dependent, submitted.

Rao, S.M., Mayer, A.R., and Harrington, D.L., The evolution of brain activation during temporal processing, Nat. Neurosci, 4, 317-323 , 2001.

Robertson, R.G., Clarke, C.A., Boyce, S., Sambrook, M.A., and Crossman, A.R., The role of striatopallidal neurones utilizing gamma-aminobutyric acid in the pathophysiology of MPTP-induced parkinsonism in the primate: evidence from [3H]flunitrazepam autoradiography, Brain Res, 531, 95-104, 1990.

Robertson, R.G., Graham, W.C., Sambrook, M.A., and Crossman, A.R., Further investigations into the pathophysiology of MPTP-induced parkinsonism in the primate: an intrace-rebral microdialysis study of gamma-aminobutyric acid in the lateral segment of the globus pallidus, Brain Res, 563, 278-280, 1991.

Saint-Cyr, J.A., Trepanier, L.L., Kumar, R., Lozano, A.M., and Lang A.E., Neuropsycholog-ical consequences of chronic bilateral stimulation of the subthalamic nucleus in Parkinson's disease, Brain, 123, 2091-2108, 2000.

Schultz, W., Dopamine neurons and their role in reward mechanisms, Curr. Opin. Neurobiol., 7, 191-197, 1997.

Smith, Y. and Kieval, J.Z., Anatomy of the dopamine system in the basal ganglia, Trends Neurosci., 23 (Suppl. S), 28-33, 2000.

Tronnier, V.M., Fogel, W., Kronenbuerger, M., and Steinvorth, S., Pallidal stimulation: an alternative to pallidotomy? J. Neurosurg., 87, 700-705, 1997.

Turski, L., Bressler, K., Rettig, K.J., Loschmann, P.A., and Wachtel, H., Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-D-aspartate antagonists, Nature, 349, 414-418, 1991.

Vila, M., Levy, R., Herrero, M.T., Faucheux, B., Obeso, J.A., Agid, Y., and Hirsch, E.C., Metabolic activity of the basal ganglia in parkinsonian syndromes in human and nonhuman primates: a cytochrome oxidase histochemistry study, Neuroscience, 71, 903-912, 1996.

Vitek, J.L., Mechanisms of deep brain stimulation: excitation or inhibition, Mov. Disord., 17 (Suppl. 3), 69-72, 2002.

Vitek, J.L., Bakay, R.A., and DeLong, M.R., Microelectrode-guided pallidotomy for medically intractable Parkinson's disease, Adv. Neurol., 74, 183-198, 1997.

Wu, Y.R., Levy, R., Ashby, P., Tasker, R.R., and Dostrovsky, J.O., Does stimulation of the GPi control dyskinesia by activating inhibitory axons? Mov. Disord., 16, 208-216, 2002.

Yelnik, J., Damier, P., Bejjani, B.P., Francois, C., Geervais, D., Dormont, D., Arnulf, I., Bonnet, A.M., Cornu, P., Pidoux, B., and Agid, Y., Functional mapping of the human globus pallidus: contrasting effect of stimulation in the internal and external pallidum in Parkinson's disease, Neuroscience, 101, 77-87, 2000.

Young, A.B. and Penney, J.B., Neurochemical anatomy of movement disorders, Neurol. Clin., 2, 417-433, 1984.

Brain Blaster

Brain Blaster

Have you ever been envious of people who seem to have no end of clever ideas, who are able to think quickly in any situation, or who seem to have flawless memories? Could it be that they're just born smarter or quicker than the rest of us? Or are there some secrets that they might know that we don't?

Get My Free Ebook


Post a comment