Current Practices and Approaches

There are more than 3 million engineers in the United States, but engineering work is not well understood by the public, which often confuses the engineer who designs or develops a device with the technician who operates it or the skilled worker who assembles it. The most common, and mistaken, view of engineering in general and biomedical engineering in particular is that it entails only the application of science. This "applied science" model disregards the central place of design and synthetic or creative thinking.

Engineers invent, design, develop, and adapt devices, constructions, materials, and processes in response to human needs and wants. Their concern is the actual behavior of the objects and systems they study; that behavior results from many simultaneous influences, only some of which are the object of study in the natural sciences. Biomedical engineers, like other engineers, often enhance and extend the distinct body of knowledge known as engineering science.

In the early twenty-first century the dominant fields of engineering—mechanical, civil, electrical, computer, chemical, and materials—are based on the physical and mathematical-computer sciences. Biomedical engineering may draw on engineering knowledge from any of those fields to help solve health problems by using state-of-art technology. In being defined by an area of human concern—medicine—bio-medical engineering is similar to another new field or area of engineering: environmental engineering.

Biomedical engineering has a somewhat different character within each of the established engineering fields. Electrical engineering informs the biomedical investigation of the bioelectric phenomena involved in nerve and muscle function and the designs of devices, such as pain-blocking stimulators and implanted electrodes, to aid hearing. Mechanical engineering illuminates problems in biomechanics, the large-scale and small-scale solid and fluid mechanics of the living body. Biomechanics leads to the production of devices such as artificial joints and has many of its applications in orthopedic surgery, physical therapy, rehabilitative medicine, and other empirical areas of healthcare. Advances in biomechanics include the investigation of cartilage at the cellular and subcellular levels and even at the molecular level.

Since the 1990s bioengineering as practiced by chemical engineers has been transformed by advances in molecular biology that have provided the theoretical and experimental basis for predicting how the human body will interact with nonhuman materials. It has produced major new tools, such as monoclonal antibodies. Therefore, molecular biology informs the design of devices in which there is dynamic exchange between human and nonhuman systems, for example, dialysis machines, heart-lung machines, artificial organs, and implants for the sustained delivery of medications. It also informs nondevice research areas such as therapeutic protein research and lends important techniques to tissue engineering: the use of engineering theory and methods to develop cell-based artificial organs. New skin for burn patients is the first of many therapies expected from tissue engineering.

Most biomedical engineers are employed outside healthcare facilities. However, a small percentage of biomedical engineers are "clinical engineers" who work in healthcare facilities and oversee the use, adaptation, integration, maintenance, and repair of an increasingly sophisticated array of devices. In rehabilitation technology, for example, "rehabilitation engineers" often collaborate in prescribing appropriate devices and designing unique devices for individuals.

Because cutting-edge technology often finds ready application in the development of military and medical devices, engineers who are attracted to such work may choose biomedical engineering as an alternative to military work. The desire to avoid military work may explain in part why the proportion of biomedical engineers in the United States who are women is high in comparison to the proportion in other engineering fields. The high proportion of women also may be due to women's interest in the helping professions, the relative openness of new fields to women, and the high rate of representation of women in the life sciences.

Collaborations between engineers and physicians in the United States highlight the cultural differences between those professions in this country. Although corporate management or "the market" may constrain engineering work, engineers thoroughly discuss and "brainstorm" how best to deal with all existing constraints. In contrast, physicians, especially surgeons and others who must make critical decisions quickly, are accustomed to unilateral decision making. Engineers often find the hierarchical organization and authoritarian practices of medicine perplexing and even counterproductive.

The naming of devices illustrates the dominance of medicine over engineering in collaborations on medical devices. Medical devices that are named for individuals (e.g., in orthopedic surgery the Harris hip and the Galante hip) bear the names of the physicians who collaborated on them or brought them into clinical use even when the design is largely the work of a single biomedical engineer. The influence of physicians on biomedical engineering in the United States is demonstrated further by the fact that the U.S. market for medical technologies, especially technologies used in healthcare facilities, is driven by physicians and the administrators of healthcare facilities. Even when U.S. physicians do not collaborate in design and development, their demands as major customers have a much greater effect on the design of biomedical engineering devices than do those of other health professionals. In contrast, in Sweden, where the healthcare system is government-sponsored, all the healthcare workers who are expected to use a device are involved in setting the requirements for the device to be designed or purchased.

Anxiety and Depression 101

Anxiety and Depression 101

Everything you ever wanted to know about. We have been discussing depression and anxiety and how different information that is out on the market only seems to target one particular cure for these two common conditions that seem to walk hand in hand.

Get My Free Ebook


Post a comment