Ethical Issues of Identifying Race in Genetics

The development of genomic research technologies has the potential for a dramatic enhancement of biomedical prevention and treatment of disease. Efforts to identify genetic mutations associated with disease may yield significant findings that uncover important clues to the onset of common diseases. Critical to these endeavors is a growing need to understand human genetic variation. In the absence of cost-effective ubiquitous genotyping technology, researchers have tended to favor population-based sampling. Strategies of using racially identified populations in the mapping of genetic markers, however, should be viewed with due consideration of the potential ethical implications of such research. Of particular concern are the potential for stigmatization and discrimination, informed consent, and distributive justice.

REIFICATION OF RACE: STIGMATIZATION AND DISCRIMINATION. Historically, race, genetics, and disease have been linked inextricably, producing a calculus of risk. Sometimes these associations are accurate, and sometimes they reflect underlying social prejudice. One risk in medical research is that any racial or ethnic identifiers used in human genetic variation research will come to be reified as biological constructs, fostering a genetic essentialism. This essentialism could obscure the fluid nature of the boundaries between groups and the common genetic variation within all groups.

An example is sickle-cell anemia, an autosomal recessive disease that is caused by a point mutation in the hemoglobin beta gene (HBB). It is a condition that has been racialized as a "black disease" in the United States. However, closer scrutiny reveals that the incidence of sickle-cell anemia is associated with zones of high malaria incidence, because carriers of that gene have some degree of protection against malaria. The condition is the result of human migration and the interaction of genes with the environment. Its emergence as a racial disease is an artifact of U.S. history. If the source of slaves to the Americas had been Mediterranean regions, where the incidence of the disease is also appreciably high, rather than from Africa, sickle-cell disease might have become known as a southern European disease. The reification of race results in such conflations.

Stigma and discrimination are potentially harmful consequences that are associated with the reification of race and genetic essentialism, particularly if curative measures are not available. Insurance companies and managed-care organizations in particular have an economic stake in controlling the potential costs of "high-risk" clients (Knoppers). In addition, social prejudice could arise in the identification of correlations between genes and disease. Race may be treated as an independent variable in the calculus of risk and result in real social harms for individuals in regard to the anticipation that they will fall ill.

INFORMED CONSENT: PROTECTING POPULATIONS. Harm from race-based genetic research may extend beyond the individuals at risk for a particular disease if targeted genetic testing implicates socially identifiable groups. Increasing attention to the ethical implications of research on human genetic variation has resulted in a shift of emphasis from individuals to "groups." The question of who should "consent" to genomic research demands a discussion of who are the potential victims of research-related harms (Kass and Sugarman). Although the informed consent process focuses on individual participants in scientific studies, risks stemming from population-based research may affect those who are not direct participants but are implicated by their identification with particular groups (Wilcox et al.; Faden and Beauchamp).

Acknowledgment of such harms has fueled a growing debate over whether individuals alone are sufficient to consent to research participation or whether others who subscribe to or are ascribed membership in a racial group also should participate in this process as potential victims of research (Greely). Several scholars and policy makers have advocated "community consultation," arguing that internal review boards (IRBs) should implement new mechanisms that supplement individual consent with group permission (Weijer; Foster and Sharp; Clayton). Others have countered that giving groups the moral authority to bestow informed consent is conceptually flawed and logistically confusing (Juengst). In dispute are the assumptions that (1) there is a singular, self-evident social body that represents a particular individual human subject, (2) that social body has the moral authority to speak for all the members of a particular group, and (3) consultation with that social body absolves researchers of responsibility for prospective harms.

Population-based DNA sampling and the identification of racial minorities in research on human genetic variation have broadened the debate over informed consent. At issue are the responsibilities of researchers and clinicians for preventing future harms associated with knowledge that links race, disease, and genes and the need for the participation of research populations in the scientific process.

DISTRIBUTIVE JUSTICE: THE PROMISE OF PERSONALIZED MEDICINE. The decision to identify race in human genetic research may have important ramifications for the establishment of research priorities that could have implications for helping exacerbate or ameliorate health disparities between groups. An example of such research is the field of pharmacogenomics. It is well recognized that most drug therapies exhibit wide variability among individuals in terms of efficacy and toxicity. It has been estimated that over 100,000 patients die and 2.2 million are injured annually by adverse drug reactions (Lazarou et al.). For many medications differences in reactions are due in part to SNPs in gene-coding drug-metabolizing enzymes, drug transporters, and/or drug targets. The ultimate goal of such research is to develop "individualized" drug therapy that will reduce adverse side effects and provide cost-effective medicines (March et al.)

The adoption of pharmcogenomics has serious implications for the practice of clinical medicine. The population-based approach to the marketing of healthcare products raises the possibility that drug development will build on and strengthen notions of racial difference. Furthermore, racial thinking may have ramifications for the perceived beneficiaries of pharmacogenomics research in that racially identified consumer groups may unduly dictate the scientific development of therapeutics. This may lead to a racial segmentation of the market in which drugs are directed at groups in a way that will increase the economic health of the companies investing in therapeutics.

In the unlikely event that genotyping becomes so common that patients are able to identify themselves in terms of the multitude of SNPs involved in disease gene associations and drug metabolism, human genetic variation research will continue to use racially identified populations. Genetic research offers the potential for significant progress toward the mitigation of health disparities between populations in the United States. However, history serves as an important reminder that every leap in scientific advancement must be tempered by careful consideration of its ethical implications.

Diabetes 2

Diabetes 2

Diabetes is a disease that affects the way your body uses food. Normally, your body converts sugars, starches and other foods into a form of sugar called glucose. Your body uses glucose for fuel. The cells receive the glucose through the bloodstream. They then use insulin a hormone made by the pancreas to absorb the glucose, convert it into energy, and either use it or store it for later use. Learn more...

Get My Free Ebook


Post a comment