Health Risks and Benefits of GM Food

Critics of GM food present three kinds of arguments to suggest that it may not be good to eat (Thompson, p. 76). First, GM foods may produce allergic reactions because known or unknown allergens could be introduced into products people believe are safe. The food industry should and does take this problem seriously; the liability issues alone are sobering. For example, because many people are allergic to peanuts, it would be risky to introduce into other crops genes that code for a protein unique to the peanut. The fact that GM foods should be tested or screened for allergens— and this may be true of all foods—seems incontrovertible.

Second, critics contend that GM foods are not more nutritious or tasty or otherwise better for the consumer than the foods that traditionally have been available (Kneen). This is largely correct. Although all kinds of crops that promise benefits to the consumer are said to be on the horizon, few have materialized; even the highly touted vitamin A—rich "golden" rice may not be better—or cheaper or more acceptable to target consumers—than simple vitamin pills. As things stand, the benefits of GM crops go principally to farmers; those benefits will be considered below. Time will tell whether GM foods will offer significant benefits to consumers.

Third, critics invoke the precautionary principle to argue that GM is novel and untested: How can one be sure it is safe? (Pence, ch. 5). Defenders of the technology answer that GM crops are hardly new; hybridization, including distant outcrossing, has been the basis of agriculture for millennia (Prakash). The genetic alterations GM achieves are more precise and therefore less extensive than are those associated with conventional breeding. There is no evidence that suggests that genetic material introduced into a plant from more distant relatives is more dangerous than that introduced from closer cousins. The food product, moreover, will not be any less safe because of the placement of a few nucleotides in its DNA. The oil from GM soy or canola, indeed, will not contain in principle any DNA or protein (there could be traces) and thus will be chemically identical to that from the non-GM plant, which is itself an artifact of conventional breeding. Those who study the extent to which genomes of plant crops have been manipulated over the millennia see no reason to think that twenty-first century techniques produce food that is inherently more dangerous (IFT).

Those who make this reply do not contend that forced mutation and artificial selection—whether by conventional methods of breeding, more advanced techniques of hybridization, or genetic recombination—are always or necessarily safe. Instead, they contend that the risks are the same across all these ways of re-creating plant genomes. Techniques of embryo rescue, mutation-forcing irradiation, and wide crosses that transformed varieties of nightshade into the tomato, for example, dwarf twenty-first century's molecular methods in scope and effect.

As expert panels typically find, "Crops modified by modern molecular and cellular methods pose risks no different from those modified by earlier genetic methods..."

(IFT, p. 23). Similary, a FAO/WHO (1991) report stated: "Biotechnology has a long history of use in food production and processing. It represents a continuum embracing both traditional breeding techniques and the latest techniques based on molecular biology. The newer biotechnological techniques, in particular, open up very great possibilities of rapidly improving the quantity and quality of food available. The use of these techniques does not result in food that is inherently less safe than that produced by conventional ones."

Dealing With Sorrow

Dealing With Sorrow

Within this audio series and guide Dealing With Sorrow you will be learning all about Hypnotherapy For Overcoming Grief, Failure And Sadness Quickly.

Get My Free Audio Series

Post a comment