1. Speed TP (ed.) (2003) Statistical Analysis of Gene Expression Microarray Data. Chapman and Hall, London.

2. Parmigiani G, Garrett ES, Irizarry RA and Zeger SL (2003) The analysis of gene expression data: an overview of methods and software. In: The Analysis of Gene Expression Data: Methods and Software, Parmigiani G, Garrett ES, Irizarry RA, Zeger SL, (eds), Springer, New York, pp. 1-45.

3. Hartigan JA (1975) Clustering Algorithms. Wiley, New York.

4. Kaufmann L and Rousseeuw PJ (1990) Finding Groups in Data: An introduction to Cluster Analysis. Wiley, New York.

5. Perou CM, Jeffrey SS, van de Rijn M, et al. (1999) Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc Natl Acad Sci USA 96(16): 9212-9217.

6. Bullinger L, Dohner K, Bair E, et al. (2004) Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med 350: 1605-1616.

7. Ripley BD (1996) Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge.

8. Hastie T, Tibshirani R and Friedman J (2003) The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York.

9. Golub TR, Slonim DK, Tamayo P, et al. (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286: 531-537.

10. Ross DT, Scherf U, Eisen M B, et al. (2000) Systematic variation in gene expression patterns in human cancer cell lines. Nature Genetics 24: 227-235.

11. Hedenfalk I, Duggan D, Chen Y, et al. (2001) Gene-expression profiles in hereditary breast cancer. N Engl J Med 344(8): 539-548.

12. Ihaka R and Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5: 299-314.

13. Gentleman R (2003) BioConductor: open source software for bioinformatics.

14. Eisen MB, Spellman PT, Brown PO and Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Nat Acad Sci USA 95: 14863-14868.

15. Gordon AD (1999) Classification. Chapman and Hall/CRC, New York.

16. Tamayo P, Slonim D, Mesirov J, et al. (1999) Interpreting gene expression with self organizing maps: methods and application to hematopoietic differentiation. Proc Nat Acad Sci USA 96: 2907-2912.

17. Hartigan JA and Wong MA (1979) A k-means clustering algorithm. Appl Stat 28: 100-108.

18. Kohonen T (1989) Self-Organization and Associative Memory. Springer-Verlag, Berlin.

19. Kachigan SK (1991) Multivariate Statistical Analysis: A Conceptual Introduction. Radius Press, New York.

20. Dunteman GH (1989) Principal Components Analysis, Vol. 69. Sage University Paper series on Quantitative Applications in the Social Sciences, series no. 07-064. Sage, Newbury Park, CA.

21. Everitt B (2001) Applied Multivariate Data Analysis. Edward Arnold, London.

22. Yeung KY and Ruzzo WL (2001) Principal component analysis for clustering gene expression data. Bioinformatics 17: 763-774.

23. West M, Blanchette C, Dressman H, et al. (2001) Predicting the clinical status of human breast cancer using gene expression profiles. Proc Nat Acad Sci USA 98: 11462-11467.

24. Knudsen S (2002) A Biologist's Guide to Analysis of DNA Microarray Data. John Wiley and Sons, New York.

25. Quackenbush J (2001) Computational analysis of microarray data. Nature Rev Genet 2: 418-427.

26. Raychaudhuri S, Stuart JM and Altman RB (2000) Principal components analysis to summarize microarray experiments: application to sporulation time series. In: Altman RB, Dunker AK, Hunter L, Lauderdale K, Klein TE, (eds), Fifth Pacific Symposium on Biocomputing, pp. 455-466.

27. Granucci F, Vizzardelli C, Pavelka N, et al. (2001) Inducible IL-2 production by dendritic cells revealed by global gene expression analysis. Nature Immunol 2: 882-888 .

28. Alter O, Brown PO and Botstein D (2000) Singular value decomposition for genome-wide expression data processing and modeling. Proc Nat Acad Sci USA 97(18): 10101-10106.

29. Khan J, Simon R, Bittner M, et al. (1998) Gene expression profiling of alveolar rhabdomyosarcoma with cDNA microarrays. Cancer Res 58: 5009-5013.

30. Bittner M, Meltzer P, Chen Y, et al. (2000) Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406: 536-540.

31. Yeung K, Fraley C, Murua A, Raftery A and Ruzzo W (2001) Model-based clustering and data transformations for gene expression data. Bioinformatics 17: 977-987.

32. Kerr MK and Churchill GA (2001) Bootstrapping cluster analysis: assessing the reliability of conclusions from microarray experiments. Proc Nat Acad Sci USA 98: 8961-8965.

33. McShane LM, Radmacher MD, Freidlin B, Yu R, Li MC and Simon R (2001) Methods for assessing reproducibility of clustering patterns observed in analyses of microarray data. Technical report 2. BRB, NCI, Bethesda, MD.

34. Bhattacharjee A, Richards WG, Staunton J, et al. (2001) Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma sub classes. Proc Nat Acad Sci USA 98: 13790-13795.

35. National Research Council: Panel on Discriminant Analysis Classification and Clustering. (1988) Discriminant Analysis and Clustering. National Academy Press, Washington, DC.

36. Dudoit S, Fridlyand J and Speed TP (2002) Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc 97: 77-87.

37. Gnanadesikan R (1977) Methods for Statistical Data Analysis of Multivariate Observations. Wiley, New York.

38. Breiman L, Friedman JH, Olshen RA and Stone CJ (1984) Classification and Regression Trees. Wadsworth International Group, Belmont, CA.

39. Hastie T and Tibshirani R (1990) Generalized Additive Models. Chapman and Hall, London.

40. Neal RM (1996) Bayesian Learning for Neural Networks. Springer-Verlag, New York.

41. Rios Insua D and Mueller P (1998) Feedforward neural networks for nonpara-metric regression. In: Practical Nonparametric and Semiparametric Bayesian Statistics. Springer, New York, pp. 181-194.

42. Slonim DK, Tamayo P, Mesirov P, Golub TR and Lander ES (1999) Class prediction and discovery using gene expression data. Discussion paper. Whitehead/M.I.T. Center for Genome Research, Cambridge, MA.

43. Dettling M and B├╝hlmann P (2002) Supervised clustering of genes. Genome Biol 3: 0069.1-0069.15.

44. Michie D, Spiegelhalter DJ and Taylor CC (eds) (1994) Machine Learning, Neural and Statistical Classification. Ellis Horwood, New York.

45. Simon R, Radmacher MD, Dobbin K and McShane LM (2003) Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. J Natl Cancer Inst 95: 14-18.

46. DeGroot MH and Fienberg SE (1983) The comparison and evaluation of forecasters. The Statistician 32: 12-22.

47. Toussaint GT (1974) Bibliography on estimation of misclassification. IEEE Trans Inform Theory IT-20: 472-479.

48. Radmacher MD, McShane LM and Simon R (2001) A paradigm for class prediction using gene expression profiles. Technical report 1. BRB, NCI, Bethesda, MD.

49. Tibshirani R, Hastie T, Narasimhan B and Chu G (2002) Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Nat Acad Sci USA 99: 6567-6572.

50. Geman D, d'Avignon C, Naiman DQ and Winslow RL (2004) Classifying gene expression profiles from pairwise mRNA comparisons. Stat Applic Genet Mol Biol 3: Article 19.

51. Cover TM and Hart PE (1967) Nearest neighbor pattern classification. IEEE Trans Inform Theory IT-13: 21-27.

52. Vapnik V (1998) Statistical Learning Theory. Wiley, New York.

53. Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2: 121-167.

54. Christianini N and Shawe-Taylor J (2000) An Introduction to Support-Vector Machines. Cambridge University Press, Cambridge.

55. Lee Y and Lee CK (2002) Classification of multiple cancer types by multicate-gory support vector machines using gene expression data. Technical Report 1051. University of Wisconsin, Madison, WI.

56. Brown MPS, Grundy WN, Lin D, et al. (2000) Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc Nat Acad Sci USA 97: 262-267.

57. Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7(2): 179-188.

58. Hastie T J, Tibshirani R and Buja A (1994) Flexible discriminant analysis by optimal scoring. J Am Stat Assoc 89: 1255-1270.

59. Li W and Yang Y (2002) How many genes are needed for a discriminant micro-array data analysis? In: Lin SM, Johnson KF (eds), Methods of Microarray Data Analysis. Kluwer Academic, Dordrecht, pp. 137-150.

60. Zhang H and Yu CY (2002) Tree-based analysis of microarray data for classifying breast cancer. Front Biosci 7: 63-67.

61. George EI and McCulloch RE (1993) Variable selection via Gibbs sampling. J Am Stat Assoc 88: 881-889.

62. Clyde MA, DeSimone H and Parmigiani G (1996) Prediction via orthogonalized model mixing. J Am Stat Assoc 91: 1197-1208.

63. Clyde MA and Parmigiani G (1998) Bayesian variable selection and prediction with mixtures. J Biopharmaceut Stat 8(3): 431-443.

64. Pavlidis P, Tang C and Noble WS (2001) Classification of genes using probabilistic models of microarray expression profiles. In: Zaki MJ, Toivonen H, Wang JTL, (eds), Proceedings of BIOKDD 2001: Workshop on Data Mining in Bioinformatics. Association for Computing Machinery, New York, pp. 15-18.

10 Ways To Fight Off Cancer

10 Ways To Fight Off Cancer

Learning About 10 Ways Fight Off Cancer Can Have Amazing Benefits For Your Life The Best Tips On How To Keep This Killer At Bay Discovering that you or a loved one has cancer can be utterly terrifying. All the same, once you comprehend the causes of cancer and learn how to reverse those causes, you or your loved one may have more than a fighting chance of beating out cancer.

Get My Free Ebook

Post a comment