1. Lockhart DJ, Dong H, Byrne MC et al. (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 14(13): 1675-1680.

2. DeRisi J, Penland L, Brown PO, Bittner ML, Meltzer PS, Ray M, Chen Y, Su YA and Trent JM (1996) Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet 14(4): 457-460.

3. Brown PO and Botstein D (1999) Exploring the new world of the genome with DNA microarrays. Nat Genet 21(1 Suppl): 33-37.

4. Cho R, Campbell M, Winzeler E, et al. (1998) A genome-wide transcriptional analysis of the mitotic cell cycle. Mol Cell 2(1): 65-73.

5. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D and Futcher B (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9(12): 3273-3297.

6. Cho R, Huang M, Campbell M, Dong H, Steinmetz L, Sapinoso L, Elledge S, Davis R and Lockhart D (2001) Transcriptional regulation and function during the human cell cycle. Nat Genet 27(1): 48-54.

7. Storch K-F, Lipan O, Leykin I, Viswanathan N, Davis FC, Wong WH and Weitz CJ (2002) Extensive and divergent circadian gene expression in liver and heart. Nature 417: 78-83.

8. Tomancak P, Beaton A, Weiszmann R et al. (2002) Systematic determination of patterns of gene expression during Drosophila embryogenesis. Genome Biol 3(12): research0088.1-0088.14 (the microarray time course data can be downloaded from

9. Himanen K, Vuylsteke M, Vanneste S et al. (2004) Transcript profiling of early lateral root initiation. Proc Natl Acad Sci USA 101(14): 5146-5151.

10. Qi H, Aguiar DJ, Williams SM, La Pean A, Pan W and Verfaillie CM (2003) Identification of genes responsible for osteoblast differentiation from human mesodermal progenitor cells. Proc Natl Acad Sci USA 100(6): 3305-3310.

11. Schwamborn J, Lindecke A, Elvers M et al. (2003) Microarray analysis of tumor necrosis factor alpha induced gene expression in u373 human glioblastoma cells. BMC Genom 4(1): 46.

12. Tepperman JM, Hudson ME, Khanna R, Zhu T, Chang SH, Wang X and Quail PH (2004) Expression profiling of phyb mutant demonstrates substantial contribution of other phytochromes to red-light-regulated gene expression during seedling de-etiolation. Plant J 38(5): 725-725.

13. Peeters PJ, Gohlmann HW, Van den Wyngaert I, Swagemakers SM, Bijnens L, Kass SU and Steckler T (2004) Transcriptional response to corticotropin-releas-ing factor in AtT-20 cells. Mol Pharmacol 66(5): 1083-1092.

14. Diggle PJ, Heagerty P, Liang K-Y and Zeger SL (2002) Analysis of longitudinal data. 2nd edn. Oxford University Press New York.

15. Diggle PJ (1990) Time Series: A Biostatistical Introduction. Oxford University Press, New York.

16. Yang YH and Speed TP (2003) Design and analysis of comparative microarray experiments. In: Speed T (ed.) Statistical Analysis of Gene Expression Microarray Data. Chapman & Hall/CRC Press.

17. Searle SR (1997) Linear Models. John Wiley & Sons, New York.

18. Neter J, Kutner MH, Wasserman W and Nachtsheim CJ (1996) Applied Linear Statistical Models, 4th edn, McGraw-Hill/Irwin.

19. Glonek GFV and Solomon PJ (2004) Factorial and time course designs for cDNA microarray experiments. Biostat 5(1): 89-111.

20. Baldi P and Long AD (2001) A Bayesian framework for the analysis of micro-array expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics 17(6): 509-519.

21. Efron B, Tibshirani R, Storey JD and Tusher V (2001) Empirical bayes of a microarray experiment. J Am Stat Assoc 96: 1151-1160.

22. Tusher VG, Tibshirani R and Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98(9): 5116-5121.

23. Dudoit S, Yang YH, Speed T and Callow M (2002) Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Stat Sin 12(1): 111-139.

24. Lönnstedt I and Speed TP (2002) Replicated microarray data. Stat Sin 12: 31-46.

25. Broberg P (2003) Statistical methods for ranking differentially expressed genes. Genome Biol 4(6): R41.

26. Ge Y, Dudoit S and Speed T (2003) Re-sampling based multiple testing for micro-array data analysis. Test 12: 1-77.

27. Kendziorski C, Newton M, Lan H and Gould M (2003) On parametric empirical Bayes methods for comparing multiple groups using replicated gene expression profiles. Stat Med 22(24): 3899-3914.

28. Reiner A, Yekutieli D and Benjamini Y (2003) Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19(3): 368-375.

29. Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Applic Genet Mol Biol 3(1): article 3.

30. Wang J and Kim SK (2003) Global analysis of dauer gene expression in Caenorhabditis elegans. Development 130(8): 1621-1634.

31. Park T, Yi S-G, Lee S, Lee SY, Yoo D-H, Ahn J-I and Lee Y-S (2003) Statistical tests for identifying differentially expressed genes in time-course microarray experiments. Bioinformatics 19(6): 694-703.

32. Romagnolo B, Jiang M, Kiraly M, Breton C, Begley R, Wang J, Lund J and Kim SK (2002) Downstream targets of let-60 Ras in Caenorhabditis elegans. Dev Biol 247: 127-136.

33. Scheffé H (1959) The Analysis of Variance. John Wiley & Sons, New York.

34. Tai YC and Speed TP (2004) A multivariate empirical Bayes statistic for replicated microarray time course data. Technical Report 667, Department of Statistics University of California, Berkeley, CA.

35. Jiang M, Ryu J, Kiraly M, Duke K, Reinke V and Kim SK (2001) Genome-wide analysis of developmental and sex-regulated gene expression profiles in Caenorhabditis elegans. Proc Natl Acad Sci USA 98(1): 218-223.

36. Tai YC and Speed TP (2005) Longitudinal microarray time course MB-statistic for multiple sample groups. Department of Statistics, University of California, Berkeley. In preparation.

37. Tai YC and Speed TP (2005) Cross-Sectional Microarray Time Course MB-statistic. Department of Statistics, University of California, Berkeley. In preparation.

38. Guo X, Qi H, Verfaillie CM and Pan W (2003) Statistical significance analysis of longitudinal gene expression data. Bioinformatics 19(13): 1628-1635.

39. Storey J, Leek J, Xiao W, Dai J and Davis R (2004) A significant method for time course microarray experiments applied to two human studies. Technical Report 232, Department of Biostatistics, University of Washington, Seattle, WA.

40. Zhao LP, Prentice R and Breeden L (2001) Statistical modeling of large micro-array data sets to identify stimulus-response profiles. Proc Natl Acad Sci USA 98(10): 5631-5636.

41. Liang K-Y and Zeger S (1986) Longitudinal data analysis using generalized linear models. Biometrika 73: 13-22.

42. Xu XL, Olson JM and Zhao LP (2002) A regression-based method to identify differentially expressed genes in microarray time course studies and its application in an inducible Huntington's disease transgenic model. Hum Mol Genet 11(17): 1977-1985.

43. Bar-Joseph Z, Gerber GK, Gifford DK, Jaakkola TS and Simon I (2003) Continuous representations of time-series gene expression data. J Comput Biol 10(3-4): 341-356.

44. Luan Y and Li H (2004) Model-based methods for identifying periodically expressed genes based on time course microarray gene expression data. Bioinformatics 20(3): 332-339.

45. Hong F and Li H (2004) B-spline based empirical Bayes methods for identifying genes with different time-course expression profiles. Submitted.

46. Lawton W, Sylvestre E and Maggio M (1972) Self-modeling nonlinear regression. Technometrics 13: 513-532.

47. Wang Y and Brown M (1996) A flexible model for human circadian rhythms. Biometrics 52(2): 588-596.

48. Bar-Joseph Z, Gerber G, Simon I, Gifford DK and Jaakkola TS (2003) Comparing the continuous representation of time-series expression profiles to identify differentially expressed genes. Proc Natl Acad Sci USA 100(18): 10146-10151.

49. Lönnstedt IM, Grant S, Begley G and Speed TP (2003) Microarray analysis of two interacting treatments: a linear model and trends in expression over time. Technical report Department of Mathematics Uppsala University Sweden.

50. Fleury G, Hero A, Yoshida S, Carter T, Barlow C and Swaroop A (2002) Pareto analysis for gene filtering in microarray experiments. In: Proceedings XI European Signal Processing Conference, France.

51. Hero A and Fleury G (2002) Posterior pareto front analysis for gene filtering. In Proceedings of Workshop on Genomic Signal Processing and Statistics (GENSIPS), Raleigh, NC.

52. Hero A and Fleury G (2004) Pareto-optimal methods for gene ranking. J VLSI Signal Process 38: 259-275.

53. Yuan M, Kendziorski C, Park F, Porter JL, Hayes K and Bradfield CA (2003) Hidden markov models for microarray time course data under multiple biological conditions. Journal of the American Statistical Association. To be published.

54. Möller-Levet CS, Cho K-H, Yin H and Wolkenhauer O (2003) Clustering of gene expression time-series data. Technical report Department of Computer Science University of Rostock, Rostock.

55. Eisen MB, Spellman PT, Brown PO and Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95(25): 14863-14868.

56. Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, Lander ES and Golub TR (1999) Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci USA 96(6): 2907-2912.

57. Tavazoie S, Hughes JD, Campbell MJ, Cho RJ and Church GM (1999) Systematic determination of genetic network architecture. Nat Genet 22(3): 281-285.

58. Reich M, Ohm K, Angelo M, Tamayo P and Mesirov JP (2004) GeneCluster 2.0: an advanced toolset for bioarray analysis. Bioinformatics 20(11): 1797-1798.

59. Saban MR, Hellmich H, Nguyen N-B, Winston J, Hammond TG and Saban R (2001) Time course of LPS-induced gene expression in a mouse model of genitourinary inflammation. Physiol Genom 5(3): 147-160.

60. Gurok U, Steinhoff C, Lipkowitz B, Ropers H-H, Scharff C and Nuber UA (2004) Gene expression changes in the course of neural progenitor cell differentiation. J Neurosci 24(26): 5982-6002.

61. Hastie T, Tibshirani R, Eisen M, Alizadeh A, Levy R, Staudt L, Chan W, Botstein D and Brown P (2000) 'gene shaving' as a method for identifying distinct sets of genes with similar expression patterns. Genome Biol 1(2): research0003.1-research0003.21.

62. Chipman H, Hastie TJ and Tibshirani R (2003) Clustering microarray data. In: Speed T (ed.) Statistical Analysis of Gene Expression Microarray Data. Chapman & Hall/CRC Press.

63. Fraley C and Raftery AE (2002) Model-based clustering discriminant analysis and density estimation. J Am Stat Assoc 97: 611-631.

64. Ramoni MF, Sebastiani P and Kohane IS (2002) From the Cover: cluster analysis of gene expression dynamics. Proc Natl Acad Sci USA 99(14): 9121-9126.

65. Yeung KY, Fraley C, Murua A, Raftery AE and Ruzzo WL (2001) Model-based clustering and data transformations for gene expression data. Bioinformatics 17(10): 977-987.

66. Schliep A, Schonhuth A and Steinhoff C (2003) Using hidden Markov models to analyze gene expression time course data. Bioinformatics 19(90001): 255i-263i.

67. Schliep A, Steinhoff C and Schonhuth A (2004) Robust inference of groups in gene expression time-courses using mixtures of HMMs. Bioinformatics 20: i283-i289.

68. Iyer VR, Eisen MB, Ross DT et al. (1999) The transcriptional program in the response of human fibroblasts to serum. Science 283(5398): 83-87.

69. Ji X, Li-Ling J and Sun Z (2003) Mining gene expression data using a novel approach based on hidden markov models. FEBS 542: 125-131.

70. Zeng Y and Garcia-Frias J (2004) A new HMM-based clustering technique for the analysis of gene expression microarray time series data. In: Currents in computational molecular biology. RECOMB, San Diego, CA, p. G32.

71. Luan Y and Li H (2003) Clustering of time-course gene expression data using a mixed effects model with B-splines. Bioinformatics 19(4): 474-482.

72. Zhang Y, Hongyuan Z, Wang J and Chu C-H (2004) Clustering of time-course gene expression data. In: Currents in computational molecular biology. RECOMB, San Diego, CA, p. G34.

73. Peddada S, Lobenhofer E, Li L, Afshari C, Weinberg C and Umbach D (2003) Gene selection and clustering for time-course and dose-response microarray experiments using order-restricted inference. Bioinformatics 19: 834-841.

74. Wakefield J, Zhou C and Self S (2003) Modelling gene expression data over time: curve clustering with informative prior distributions. In: Bernardo J, Bayarri M, Berger J, Dawid A, Heckerman D, Smith A and West M, (eds) Bayesian Statistics 7. Oxford University Press, Oxford, pp. 711-722.

75. Fellenberg K, Hauser NC, Brors B, Neutzner A, Hoheisel JD and Vingron M (2001) Correspondence analysis applied to microarray data. Proc Natl Acad Sci USA 98(19): 10781-10786.

76. Tan Q, Brusgaard K, Kruse T, Oakeley E, Hemmings B, Beck-Nielsen H, Hansen L and Gaster M (2004) Correspondence analysis of microarray time-course data in case-control design. J Biomed Inf 37(5): 358-365.

77. Holter NS, Mitra M, Maritan A, Cieplak M, Banavar JR and Fedoroff NV (2000) Fundamental patterns underlying gene expression profiles: simplicity from complexity. Proc Natl Acad Sci USA 97(15): 8409-8414.

78. Alter O, Brown PO and Botstein D (2000) Singular value decomposition for genome-wide expression data processing and modeling. Proc Natl Acad Sci USA 97(18): 10101-10106.

79. Aach J and Church GM (2001) Aligning gene expression time series with time warping algorithms. Bioinformatics 17(6): 495-508.

80. Ihaka R and Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5(3): 299-314.

81. Wettenhall JM and Smyth GK (2004) limmaGUI: a graphical user interface for linear modeling of microarray data. Bioinformatics bth449.

82. Hartigan J and Wong M (1979) A K-means clustering algorithm. Appl Stat 28: 100-108.

83. Heyer LJ, Kruglyak S and Yooseph S (1999) Exploring expression data: identification and analysis of coexpressed genes. Genome Res 9(11): 1106-1115.

84. Balasubramaniyan R, Hullermeier E, Weskamp N and Kamper J (2004) Clustering of gene expression data using a local shape-based similarity measure. Bioinformatics, page bti095.

85. Maratou K, Forster T, Costa Y, Taggart M, Speed RM, Ireland J, Teague P, Roy D, and Cooke HJ. (2003) Expression profiling of the developing testis in wildtype and Dazl knockout mice. Molecular Reproduction and Development 67(1): 26-54.

10 Ways To Fight Off Cancer

10 Ways To Fight Off Cancer

Learning About 10 Ways Fight Off Cancer Can Have Amazing Benefits For Your Life The Best Tips On How To Keep This Killer At Bay Discovering that you or a loved one has cancer can be utterly terrifying. All the same, once you comprehend the causes of cancer and learn how to reverse those causes, you or your loved one may have more than a fighting chance of beating out cancer.

Get My Free Ebook

Post a comment