References

1. Evans, W.E.; Relling, M.V. Pharmacogenetics: Translating functional genomics into rational therapies. Science 1999, 286, 487-491.

2. Garber, K. Gene expression tests foretell breast cancer's future. Science 2004, 303 (5665), 1754-1755.

3. Bustin, S.A.; Dorudi, S. The value of microarray techniques for quantitative gene profiling in molecular diagnostics. Trends Mol. Med. 2002, 8 (6), 269 -272.

4. Amos, J.; Patnaik, M. Commercial molecular diagnostics in the U.S.: The Human Genome Project to the clinical laboratory. Human Mutat. 2002, 19, 324-333.

5. Foy, C.A.; Parkes, H.C. Emerging homogeneous DNA-based technologies in the clinical laboratory. Clin. Chem. 2001, 47 (6), 990-1000.

6. Meldrum, D. Automation for genomics, part two: Sequencers, microarrays, and future trends. Genome Res.

2000, 10, 1288-1303.

7. Vercoutere, W.; Akeson, M. Biosensors for DNA sequence detection. Curr. Opin. Chem. Biol. 2002, 6, 816-822.

8. Feriotto, G.; Breveglieri, G.; Finotti, A.; Gardenghi, S.; Gambari, R. Real-time multiplex analysis of four beta-thalassemia mutations employing surface plasmon resonance and biosensor technology. Lab. Invest. 2004, 84 (6), 796-803.

9. Jin-Lee, H.; Goodrich, T.T.; Corn, R.M. SPR imaging measurements of 1-D and 2-D DNA microarrays created from microfluidic channels on gold thin films. Anal. Chem.

10. Furtado, L.M.; Thompson, M. Hybridization of complementary strand and single base mutated oligonucleotides detected with an on-line acoustic wave sensor—Plenary. Analyst 1998, 123, 1937-1945.

11. Jayarajah, C.N.; Thompson, M. Signaling of transcrip-tional chemistry in the on-line detection format. Biosens. Bioelectron. 2002, 17 (3), 159-171.

12. Epstein, J.R.; Lee, M.; Walt, D.R. High-density fiber-optic genosensor microsphere array capable of zeptomole detection limits. Anal. Chem. 2002, 74, 1836-1840.

13. Watterson, J.H.; Raha, S.; Kotoris, C.C.; Wust, C.C.; Gharahaghi, F.; Jantzi, S.C.; Haynes, N.K.; Gendron, N.H.;

Krull, U.J.; Mackenzie, A.E.; Piunno, P.A.E. Rapid detection of single nucleotide polymorphisms associated with spinal muscular atrophy by use of a reusable fibre-optic biosensor. Nucleic Acids Res. 2004, 32 (2), e18-e24.

14. Bailey, R.C.; Nam, J.M.; Mirkin, C.A.; Hupp, J.T. Realtime multicolor DNA detection with chemoresponsive diffraction gratings and nanoparticle probes. J. Am. Chem. Soc. 2003, 125 (44), 13541-13547.

15. Baeumner, A.J.; Pretz, J.; Fang, S. A universal nucleic acid sequence biosensor with nanomolar detection limits. Anal. Chem. 2004, 76 (4), 888 - 894.

16. Zhong, X.-b.; Reynolds, R.; Kidd, J.R.; Kidd, K.K.; Jension, R.; Marlar, R.A.; Ward, D.C. Single-nucleotide polymorphism genotyping on optical thin-film biosensor chips. PNAS 2003, 100 (20), 11559-11564.

17. Park, S.J.; Taton, T.A.; Mirkin, C.A. Array-based electrical detection of DNA with nanoparticle probes. Science 2002, 295, 1503-1506.

18. Bernaki, S.; Farkas, D.H.; Shi, W.; Chan, V.; Liu, Y. Beck, J.; Bailey, K.S.; Pratt, V.M.; Monaghan, K.G. Matteson, K.J.; Schaefer, F.V.; Friez, M.; Shrimpton, A.E. Stenzel, T.T. Bioelectronic sensor technology for detection of cystic fibrosis and hereditary hemochromatosis mutations. Arch. Path. Lab. Med. 2003, 127, 1565-1572.

19. Mao, Y.; Luo, C.; Ouyang, Q. Studies of temperature-dependent electronic transduction on DNA hairpin loop sensor. Nucleic Acids Res. 2003, 31 (18), e108-e114.

20. Fan, C.; Plaxco, K.W.; Heeger, A.J. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. PNAS 2003, 100 (15), 9134-9137.

21. Miller, M.M.; Sheehan, P.E.; Edelstein, R.L.; Tamanaha,

C.R.; Zhong, L.; Bounnak, S.; Whitman, L.J.; Colton, R.J. A DNA array sensor utilizing magnetic microbeads and magnetoelectronic detection. J. Magn. Magn. Mater. 2001, 225, 138-144.

22. Schotter, J.; Kamp, P.B.; Becker, A.; Puhler, A.; Reiss, G.; Bruckl, H. Comparison of a prototype magnetoresistive biosensor to standard fluorescent DNA detection. Biosens. Bioelectron. 2004, 19 (10), 1149-1156.

23. Akeson, M.; Branton, D.; Kasianowicz, J.J.; Brandin, E.; Deamer, D. Microsecond time-scale discrimination amony polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophys. J. 1999, 77, 3227-3233.

24. Winters-Hilt, S.; Vercoutere, W.; DeGuzman, V.S.; Deamer,

D.; Akeson, M.; Haussler, D. Highly accurate real-time classification of Watson-Crick base-pairs on termini of single DNA molecules. Biophys. J. 2003, 84, 967-976.

25. Vercoutere, W.; Winters-Hilt, S.; DeGuzman, V.S.; Deamer, D.; Ridino, S.E.; Rodgers, J.T.; Olsen, H.E.; Marziali, A.; Akeson, M. Discrimination among individual Watson-Crick base pairs at the termini of single DNA hairpin molecules. Nucleic Acids Res. 2003, 31 (4), 13111318.

26. Levene, M.J.; Korlach, J.; Turner, S.W.; Forquet, M.; Craighead, H.G.; Webb, W.W. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 2003, 299, 682-686.

Getting Started With Dumbbells

Getting Started With Dumbbells

The use of dumbbells gives you a much more comprehensive strengthening effect because the workout engages your stabilizer muscles, in addition to the muscle you may be pin-pointing. Without all of the belts and artificial stabilizers of a machine, you also engage your core muscles, which are your body's natural stabilizers.

Get My Free Ebook


Post a comment