1. Triglia, T.; Peterson, M.G.; Kemp, D.J. A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Res. 1988, 16, 8186.

2. Ochman, H.; Gerber, A.S.; Hartl, D.L. Genetic applications of an inverse polymerase chain reaction. Genetics 1988, 120, 621-623.

3. Ochman, H.; Ajioka, J.W.; Garza, D.; Hartl, D.L. Inverse Polymerase Chain Reaction. In PCR Technology: Principles and Applications for DNA Amplification, 1st Ed.; Erlich, H.A., Ed.; Oxford University Press: Oxford, UK, 1989; 105-111.

4. Silver, J.; Keerikatte, V. Novel use of Polymerase chain reaction to amplify cellular DNA adjacent to an integrated Provirus. J. Virol. 1989, 63, 1924-1928.

5. Silverman, G.A.; Ye, R.D.; Pollock, K.M.; Sadler, J.E.; Korsmeyer, S.J. Use of yeast artificial chromosome clones for mapping and walking within human chromosome segment 18q21.3. Proc. Natl. Acad. Sci. U. S. A. 1989, 86, 7485-7489.

6. Earp, D.J.; Lowe, B.; Baker, B. Amplification of genomic sequences flanking transposable elements in host and heterologous plants: A tool for transposon tagging and genome characterisation. Nucleic Acids Res. 1990, 18, 3271-3279.

7. Huckaby, C.S.; Kouri, R.E.; Lane, M.J.; Peshick, S.M.; Carroll, W.T.; Henderson, S.M.; Faldasz, B.D.; Waterbury, P.G.; Vournakis, J.N. An efficient technique for obtaining sequences flanking inserted retroviruses. GATA 1991, 8, 151-158.

8. Rosenthal, A. PCR amplification techniques for chromosome walking. Trends Biotechnol. 1992, 10, 44-48.

9. Huang, S.H. Inverse polymerase chain reaction. An efficient approach to cloning cDNA ends. Mol. Biotechnol. 1994, 2, 15-22.

10. Benkel, B.F.; Fong, Y. Long range-inverse PCR (LR-IPCR): Extending the useful range of inverse PCR. Genet. Anal. 1996, 13, 123-127.

11. Silver, J. Inverse Polymerase Chain Reaction. In PCR A Practical Approach, 4th Ed.; McPherson, M.J., Quirke, P., Taylor, G.R., Eds.; The Practical Approach Series; Oxford University Press: Oxford, UK, 1994; Vol. 1, 137-146.

12. Martin, V.J.; Mohn, W.W. An alternative inverse PCR (IPCR) method to amplify DNA sequences flanking Tn5 transposon insertions. J. Microbiol. Methods 1999, 35, 163-166.

13. Feng Jin, Y.; Ishibashi, T.; Nomoto, A.; Masuda, M. Isolation and analysis of retroviral integration targets by solo long terminal repeat inverse PCR. J. Virol. 2002, 76, 5540-5547.

14. Mack, K.D.; Jin, X.; Yu, S.; Wei, R.; Kapp, L.; Green, C.; Herndier, B.; Abbey, N.W.; Elbaggari, A.; Liu, Y.; McGrath, M.S. HIV insertions within and proximal to host cell genes are a common finding in tissues containing high levels of HIV DNA and macrophage-associated p24 antigen expression. J. Acquir. Immune Defic. Syndr. 2003, 33, 308-320.

15. Tseui, D.J.; Chen, P.J.; Lai, M.Y.; Chen, D.S.; Yang, C.S.; Chen, J.Y.; Hsu, T.Y. Inverse polymerase chain reaction for cloning cellular sequences adjacent to integrated hepatitis B virus DNA in hepatocellular carcinomas. J. Virol. Methods 1994, 49, 269-284.

16. Williams, M.; Rainville, I.R.; Nicklas, J.A. Use of inverse PCR to amplify and sequence breakpoints of HPRT deletion and translocation mutations. Environ. Mol. Mutagen. 2002, 39, 22-32.

17. Akiyama, K.; Watanabe, H.; Tsukada, S.; Sasai, H. A novel method for constructing gene-targeting vectors. Nucleic Acids Res. 2000, 28, E77.

18. Otal, I.; Samper, S.; Asensio, M.P.; Vitoria, M.A.; Rubio, M.C.; Gomez-Lus, R.; Martin, C. Use of a PCR method based on IS6110 Polymorphisms for Typing Mycobacterium tuberculosis strains from BACTEC cultures. J. Clin. Microbiol. 1997, 35, 273-277.

19. Kremer, K.; van Soolingen, D.; Frothingham, R.; Haas, W.H.; Hermans, P.W.M.; Martin, C.; Palittapongarnpim, P.; Plikaytis, B.B.; Riley, L.W.; Yakrus, M.A.; Musser, J.M.; van Embden, J.D.A. Comparisons of methods based on different molecular epidemiological markers for typing of Mycobacterium tuberculosis complex strains: Interlab-oratory study of discriminatory power and reproducibility. J. Clin. Microbiol. 1999, 37, 2607-2618.

20. Averof, M. Arthropod evolution: Same Hox genes, different body plans. Curr. Biol. 1997, 7, R634-R636.

21. Li, J.; Shen, H.; Himmel, K.L.; Dupuy, A.J.; Largaespada, D.A.; Nakamura, T.; Shaughnessy, J.D.; Jenkins, N.A.; Copeland, N.G. Leukaemia disease genes: Large-scale cloning and pathway predictions. Nat. Genet. 1999, 23, 348-353.

22. Sanchez-Font, M.F.; Bosch-Comas, A.; Gonzalez-Duarte, R.; Marfany, G. Overexpression of FABP7 in Down syndrome fetal brains is associated with PKNOX1 gene-dosage imbalance. Nucleic Acids Res. 2003, 31, 27692777.

Getting Started With Dumbbells

Getting Started With Dumbbells

The use of dumbbells gives you a much more comprehensive strengthening effect because the workout engages your stabilizer muscles, in addition to the muscle you may be pin-pointing. Without all of the belts and artificial stabilizers of a machine, you also engage your core muscles, which are your body's natural stabilizers.

Get My Free Ebook

Post a comment