Space Biology is a fundamental component of Space Life Sciences. Space life sciences include the sciences of physiology, medicine, and biology, and are linked with the sciences of physics, chemistry, geology, engineering, and astronomy. Space life sciences research not only helps to increase new knowledge of our own human function and our capacity to live and work in space, but also explores fundamental questions about the role of gravity in the formation, evolution, maintenance, and aging processes of life on Earth.

As with Space Physiology and Space Medicine, Space Biology experiments have a goal of using the space environment as a tool to help in the understanding of the influence of gravity on fundamentals biological processes. Space Biology focuses on smaller organisms, such as cells, animals and plants, whereas Space Physiology looks at systems level in humans. In addition, Space Medicine must assess the problems and dangers with which humans will be required to cope during prolonged spaceflights, and suggest solutions, or countermeasures, to those problems (Clément 2005).

Space Biology reflects the evolving nature of biological research as well as the ever-increasing linkage between science and technology. As such, scientific research in space biology encompasses a broad range of biological sub disciplines. Gravitational Biology examines the role of gravity in the evolution and development of terrestrial organisms and ecological systems as well as how plants and animals react and adjust to the effects of different gravity levels. Research spans multiple levels of biological processes, from molecular and cellular through tissue and organism to ecosystem and evolutionary.

More specifically, Cell Biology investigates the physical effects of spaceflight at the cellular level, i.e., exploring whether gravity has a direct effect on cells, or if their aspect and function are modified due to changes in gas exchange mechanisms, heat transfer, or fluid physics in the absence of gravity. At the molecular level, scientists study the expression of genetic information in response to exposure to the space environment.

At the organism level, researchers compare responses of a wide variety of organisms to the spaceflight environment. Developmental Biology evaluates how spaceflight affects the development of multicellular organisms. Investigators study what happens during critical stages of development to ascertain whether altered gravity levels or related spaceflight factors induce profound effects that change, limit, or block normal development, and whether or not these effects are reversible. At the molecular level, researchers work to identify what genes, gene products, and metabolic changes serve as markers for such developmental polymorphism or plasticity.

Research in Radiation Biology looks for reliable ways to predict and measure the effects of ionizing radiation on living tissues. Radiation biologists work in active cooperation with clinicians to refine our knowledge of the varying effects of radiation on the living body. Both in vitro and in vivo observations from biological tissues exposed to space radiation have enriched our understanding of these processes, and point to a future, which includes cellular and genetic promise in radiation response modifiers and increasing precision in applying radiation to disease.

As in any research discipline, a distinction needs to be made between the factors that are of applied nature, and those that concern basic aspects of biology as studied in the space environment. The basic research objectives of space biology are to make use of the unique properties of the space environment to study the fundamental nature and properties of living organisms (Table 1-01).

• Understand the effects of gravity on cells, animals and plants

• Determine the combined effects of microgravity and other environmental stresses (e.g., radiation, absence of day/night cycles) on biological systems

• Improve the quality of life on Earth through the use of the space environment to advance knowledge in the biological sciences

Table 1-01. Goals of Space Biology.

The applied aspects, however, include the better characterization, purification and possible culture of medically valuable substances here on Earth, by taking advantage of the effects of microgravity on the growth of these substances (Figure 1-03). These applied aspects are also referred to as the area of Biotechnology>. Biotechnology includes those techniques, equipment, and procedures that are developed and used in support of near-term and long-term science goals. Space biotechnological research programs use "genomic technologies", molecular and nano-technologies, cDNA2 arrays, gene array technologies, and cell culture and related habitat systems. It is also necessary to develop sensors, signal processors, biotelemetry systems, sample management and handling systems, and other instruments and platforms for real-time monitoring and characterization of biological and physiological phenomena while the research is being conducted on board the space laboratory. In particular, there is a need for automated acquisition, processing, analysis, communication, archiving, and retrieval of biological data with interfaces to advanced bioinformatics and biocomputation systems. Finally, scientists require advanced bioimaging systems, with real-time capabilities for visualization, imaging, and optical characterization of biological systems. These technologies include multidimensional fluorescent microscopy, spectroscopy systems, and multi- and hyperspectral imaging.

Figure 1-03. Close-up view of sodium chloride crystals in a water bubble within a 50-mm metal loop photographed by a crewmember in the Destiny laboratory on the International Space Station. Photo courtesy of NASA.

2 cDNA (for copy DNA) is a DNA strand synthesized (copied) from mRNA (messenger RNA) rather than from a DNA template. This type of DNA is used for cloning or as a DNA probe for locating specific genes in DNA hybridization studies.

There is also a practical need to study plant and microbial interactions in varying gravitational environments. This is essential to our ultimate ability to sustain humans for a year or more on the surface of extraterrestrial bodies or in spaceflight missions of long duration where re-supply is not possible and food must be produced in situ. Experiments during long-term space missions will determine which plants are most efficient and best suited for our needs. For instance, can soybeans germinate, grow normally, and produce an optimum crop of new soybeans for food and new seed for ensuring future crops? All of this biological cycling along with the development of equipment for water and atmosphere recycling and waste management will also yield important benefits for terrestrial applications.

Telescopes Mastery

Telescopes Mastery

Through this ebook, you are going to learn what you will need to know all about the telescopes that can provide a fun and rewarding hobby for you and your family!

Get My Free Ebook

Post a comment