Problems and Solutions

In 1995, Dr. Albert Stacco, a professional crystallographer, flew on board the U.S. Microgravity (USML-2) Spacelab mission to complete an experiment on growing zeolite crystals (Figure 8-12). As such, he gained unique insights through serving as a scientist, astronaut, and commercial entrepreneur at the same time. The Zeolite Experiment was a success, yielding zeolite crystals that were superior to those grown on Earth (Figure 8-13).

However, the eventual commercial outcome of the Zeolite Experiment was not as dependent on the quality as it was on the relative cost and availability of zeolites produced on Earth, and the business relationship of the sponsors of the program. At this point, the zeolites produced on Earth are of adequate quality for commercial uses, and their price and availability are better than those produced in microgravity. Furthermore, current oil industry cracking equipment is designed for the existing zeolites, and the industry would be faced with large costs to convert to the use of the ones produced in microgravity. However, several potential customers expressed that should the need arise for microgravity production, they would not hesitate to invest the money required to facilitate production in space.

Figure 8-13. Zeolites are used as catalysts in the chemical processing industry, and gasoline is produced or upgraded using zeolites as catalysts in the refining process. Zeolites break up large, heavy oil molecules, making them smaller, and add hydrogen to the structure of the oil molecules so they burn more effectively. Zeolite aystals grown in microgravity (right) were at least 10 times larger than those produced in similar ground-based processing (left). Photo courtesy of NASA.

Figure 8-13. Zeolites are used as catalysts in the chemical processing industry, and gasoline is produced or upgraded using zeolites as catalysts in the refining process. Zeolites break up large, heavy oil molecules, making them smaller, and add hydrogen to the structure of the oil molecules so they burn more effectively. Zeolite aystals grown in microgravity (right) were at least 10 times larger than those produced in similar ground-based processing (left). Photo courtesy of NASA.

Dr. Sacco stated that commercialization in space should not be measured against the criteria used on Earth. On Earth, a company may have as many as 10,000 potential products in R&D, with experiments performed 24 hours a day. Of these 10,000, the vast majority will generally be canceled for one reason or another before reaching production and market. However, a vast number of experiments and samples will have been processed to bring the successful products to term. By comparison, space offers few opportunities to experiment (38 samples in the case of zeolites) and offers sporadic access to the "lab" as opposed to round-the-clock availability. There is also the problem of weighting commercial value against scientific value. This is not a necessary or even valid comparison. In fact, the majority of science ends up having some commercial value (National Research Council 2000).

Another problem might come from the selection process of the candidate experiments for space bioprocessing. Space experiments are often selected based on judgments on which science will benefit from the microgravity environment. Because of a lack of good models in the area of bioprocessing, the peer review has often restricted the scope of science accepted for flight. This has probably resulted in missing the "wave" of new possibilities in discovery and potential market advantages for industry.

Another important point is that the success of virtually any venture, business or science, depends on the staff. It is generally accepted that scientists are better at running experiments than non-scientists. No amount of instruction manuals, expert systems and communications can replace the "gut feel" and experience of a scientist. At present there are approximately 40 scientists with the training and qualifications to go into space. Dr. Sacco believes that the performance of ISS and Shuttle experiments would be greatly enhanced if there were always a scientist on the flight crew, or at the very least available as a visiting consultant during crew change-over on ISS (Richardson 1997).

The burden of excessive paper work is unanimously criticized by the investigators involved in space research. Not only are the application processes complicated, they often need to be fully re-filed for each flight. To the uninitiated (or even the experienced) the flight application and certification process can be a minefield of inconsistencies, inter-Code battles, luck and unforeseen delays. None of these characteristics are attractive to business.

Finally, price and schedule remain two of the most important factors in determining the commercial viability of ISS and Shuttle. "Fly early, fly often" is the basic request of any organization wishing to work in space. There is also a willingness to pay a "fair price" for the service, which can best be defined as either marginal cost, or direct cost. Marginal cost is the additional cost of flying an experiment on a particular mission. This is variable but, in the case of a flight which is due to be launched with room on the manifest, the marginal cost is approximately zero. The cost of launching additional weight is probably inconsequential in terms of overall fuel cost. The crew costs will be identical, and there is no opportunity cost. Direct cost is applicable to the cost of a dedicated flight. In this case the commercial interest would be that NASA does not apply fixed overhead to the flight, but only charges for expenses directly attributable to the flight. This would include fuel, boosters, turn-around, etc. This figure has not been accurately calculated, but it is estimated to be less than $100 million (National Research Council 2000).

Scheduling is affected by the current hiatus due to ISS construction. When fully operational, the ISS will offer ideal mission length, since a 28-90 day period is adequate for performing a meaningful series of experiments. The greater the time spent in space, the more certain costs are spread, and the lower the per day rate, hence the lower the cost of individual experiments. So, the IS S should greatly improve prospects for successful and affordable biotechnology experiments.

Figure 8-14. Astronaut Peggy A. Whitson inserts an experiment cartridge in the autoclave for the Zeolite Crystal Growth experiment in the Destiny laboratory on the ISS. Photo courtesy of NASA.
0 0

Post a comment