1. Kohler, G., Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975; 256 (5517): 495-7.

2. Ezzell, C. Magic bullets fly again. Sci. Am. 2001; 285 (4): 34-41.

3. Carter, P. Improving the efficacy of antibody-based cancer therapies. Nat. Rev. Cancer 2001; 1 (2): 118-29.

4. Zwick, E., Bange, J., Ullrich, A. Receptor tyrosine kinases as targets for anticancer drugs. Trends Mol. Med. 2002; 8 (1): 17-23.

5. Klement, G., Huang, P., Mayer, B., et al. Differences in therapeutic indexes of combination metronomic chemotherapy and an anti-VEGFR-2 antibody in multidrug-resistant human breast cancer xenografts. Clin. Cancer Res. 2002; 8 (1): 221-32.

6. Hurwitz, H., Fehrenbacher, L., Novotny, W., et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 2004; 350 (23): 2335-42.

7. Saltz, L.B., Meropol, N.J., Loehrer, P.J., Sr., Needle, M.N., Kopit, J., Mayer, R.J. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J. Clin. Oncol. 2004; 22 (7): 1201-8.

8. Folkman, J., Browder, T., Palmblad, J. Angiogenesis research: guidelines for translation to clinical application. Thromb. Haemost. 2001; 86 (1): 23-33.

9. Posey, J.A., Khazaeli, M.B., DelGrosso, A., et al. A pilot trial of Vitaxin, a humanized anti-vitronectin receptor (anti alpha v beta 3) antibody in patients with metastatic cancer. Cancer Biother. Radiopharm. 2001; 16 (2): 125-32.

10. Jayson, G.C., Mullamitha, S., Ton, C., et al. Phase I study of CNTO 95, a fully human monoclonal antibody (mAb) to v integrins, in patients with solid tumors. In Annual Meeting Proceedings of the American Society of Clinical Oncology 2004; 23: 224.

11. Bissell, M.J., Radisky, D. Putting tumours in context. Nat. Rev. Cancer 2001; 1 (1): 46-54.

12. Yan, L., Song, X.-Y., Nakada, M. Interplay between inflammation and tumor angiogenesis. In: Morgan, D., Forssman, U.J., Nakada, M., eds. Cancer and Inflammation. Basel: Birkhauser Publishing; 2004: 99-121.

13. Maisey, N.R., Hall, K., Lee, C., et al. Infliximab: a phase II trial of the tumour necrosis factor (TNF) monoclonal antibody in patients with advanced renal cell cancer (RCC). In Annual Meeting Proceedings of the American Society of Clinical Oncology 2004; 23: 384.

14. Anderson, G., Nakada, M., DeWitte, M. Tumor necrosis factor-a in the pathogenesis and treatment of cancer. Curr. Opinion Pharmacol. 2004; 4: 314-20.

15. Kurzrock, R. The role of cytokines in cancer-related fatigue. Cancer 2001; 92 (6 Suppl.): 1684-8.

16. Wichers, M., Maes, M. The psychoneuroimmuno-pathophysiology of cytokine-induced depression in humans. Int. J. Neuropsychopharmacol. 2002; 5 (4): 375-88.

17. Ramesh, G., Reeves, W.B. TNF-alpha mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J. Clin. Invest. 2002; 110 (6): 835-42.

18. Tobinick, E.L. Targeted etanercept for treatment-refractory pain due to bone metastasis: two case reports. Clin. Ther. 2003; 25 (8): 2279-88.

19. Korngold, R., Marini, J.C., de Baca, M.E., Murphy, G.F., Giles-Komar, J. Role of tumor necrosis factor-alpha in graft-versus-host disease and graft-versus-leukemia responses. Biol. Blood Marrow Transplant 2003; 9 (5): 292-303.

20. Tisdale, M.J., Cachexia in cancer patients. Nat. Rev. Cancer 2002; 2 (11): 862-71.

21. Guttridge, D.C., Mayo, M.W., Madrid, L.V., Wang, C.Y., Baldwin, A.S., Jr. NF-kappa B-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science 2000; 289 (5488): 2363-6.

22. Acharyya, S., Ladner, K.J., Nelsen, L.L., et al. Cancer cachexia is regulated by selective targeting of skeletal muscle gene products. J. Clin. Invest. 2004; 114 (3): 370-8.

23. Argiles, J.M., Busquets, S., Lopez-Soriano, F.J. Cytokines in the pathogenesis of cancer cachexia. Curr. Opinion Clin. Nutr. Metab. Care 2003; 6 (4): 401-6.

24. Azuma, Y., Kaji, K., Katogi, R., Takeshita, S., Kudo, A. Tumor necrosis factor-alpha induces differentiation of and bone resorption by osteoclasts. J. Biol. Chem. 2000; 275 (7): 4858-64.

25. Schafers, M., Lee, D.H., Brors, D., Yaksh, T.L., Sorkin, L.S. Increased sensitivity of injured and adjacent uninjured rat primary sensory neurons to exogenous tumor necrosis factor-alpha after spinal nerve ligation. J. Neurosci. 2003; 23 (7): 3028-38.

26. Delanian, S., Porcher, R., Balla-Mekias, S., Lefaix, J.L. Randomized, placebo-controlled trial of combined pentoxifylline and tocopherol for regression of superficial radiation-induced fibrosis. J. Clin. Oncol. 2003; 21 (13): 2545-50.

27. Rube, C.E., van Valen, F., Wilfert, F., et al. Ewing's sarcoma and peripheral primitive neuroectodermal tumor cells produce large quantities of bioactive tumor necrosis factor-alpha (TNF-alpha) after radiation exposure. Int. J. Radiat. Oncol. Biol. Phys. 2003; 56 (5): 1414-25.

28. Best, C.J., Emmert-Buck, M.R. Molecular profiling of tissue samples using laser capture microdissection. Expert Rev. Mol. Diagn. 2001; 1 (1): 53-60.

29. Liotta, L.A., Kohn, E.C., Petricoin, E.F. Clinical proteomics: personalized molecular medicine. JAMA 2001; 286 (18): 2211-4.

30. Liu, B., Huang, L., Sihlbom, C., Burlingame, A., Marks, J.D. Towards proteome-wide production of monoclonal antibody by phage display. J. Mol. Biol. 2002; 315 (5): 1063-73.

31. Agus, D.B., Akita, R.W., Fox, W.D., et al. Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell 2002; 2 (2): 127-37.

32. Albanell, J., Codony, J., Rovira, A., Mellado, B., Gascon, P. Mechanism of action of anti-HER2 monoclonal antibodies: scientific update on trastuzumab and 2C4. Adv. Exp. Med. Biol. 2003; 532: 253-68.

Ravetch, J.V., Bolland, S. IgG Fc receptors. Annu. Rev. Immunol. 2001; 19: 275-90. Dijstelbloem, H.M., van de Winkel, J.G., Kallenberg, C.G. Inflammation in autoimmunity: receptors for IgG revisited. Trends Immunol. 2001; 22 (9): 510-6. Harrison, P.T., Davis, W., Norman, J.C., Hockaday, A.R., Allen, J.M. Binding of monomeric immunoglobulin G triggers Fc gamma RI-mediated endocytosis. J. Biol. Chem. 1994; 269 (39): 24396-402.

Guyre, C.A., Keler, T., Swink, S.L., Vitale, L.A., Graziano, R.F., Fanger, M.W. Receptor modulation by Fc gamma Rl-specific fusion proteins is dependent on receptor number and modified by IgG. J. Immunol. 2001; 167 (11): 6303-11. Clynes, R.A., Towers, T.L., Presta, L.G., Ravetch, J.V. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat. Med. 2000; 6 (4): 443-6. Cartron, G., Dacheux, L., Salles, G., et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor Fcgamma RIIIa gene. Blood 2002; 99 (3): 754-8.

Weng, W.K., Levy, R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J. Clin. Oncol. 2003; 21 (21): 3940-7.

Dall'Ozzo, S., Tartas, S., Paintaud, G., et al. Rituximab-dependent cytotoxicity by natural killer cells: influence of FCGR3A polymorphism on the concentration-effect relationship. Cancer Res. 2004; 64 (13): 4664-9.

Isaacs, J.D., Wing, M.G., Greenwood, J.D., Hazleman, B.L., Hale, G., Waldmann, H. A therapeutic human IgG4 monoclonal antibody that depletes target cells in humans. Clin. Exp. Immunol. 1996; 106 (3): 427-33.

Bolt, S., Routledge, E., Lloyd, I., et al. The generation of a humanized, non-mitogenic CD3 monoclonal antibody which retains in vitro immunosuppressive properties. Eur. J. Immunol. 1993; 23 (2): 403-11.

Aalberse, R.C., Schuurman, J. IgG4 breaking the rules. Immunology 2002; 105 (1): 9-19. Schuurman, J., Van Ree, R., Perdok, G.J., Van Doorn, H.R., Tan, K.Y., Aalberse, R.C. Normal human immunoglobulin G4 is bispecific: it has two different antigen-combining sites. Immunology 1999; 97 (4): 693-8.

Angal, S., King, D.J., Bodmer, M.W., et al. A single amino acid substitution abolishes the heterogeneity of chimeric mouse/human (IgG4) antibody. Mol. Immunol. 1993; 30 (1): 105-8.

Shields, R.L., Namenuk, A.K., Hong, K., et al. High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R. J. Biol. Chem. 2001; 276 (9): 6591-604.

Shields, R.L., Lai, J., Keck, R., et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fc gamma RIII and antibody-dependent cellular toxicity. J. Biol. Chem. 2002; 277 (30): 26733-40.

Shinkawa, T., Nakamura, K., Yamane, N., et al. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J. Biol. Chem. 2003; 278 (5): 3466-73.

Yamane-Ohnuki, N., Kinoshita, S., Inoue-Urakubo, M., et al. Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol. Bioeng. 2004; 87 (5): 614-22.

50. Umana, P., Jean-Mairet, J., Moudry, R., Amstutz, H., Bailey, J.E. Engineered glyco-forms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat. Biotechnol. 1999; 17 (2): 176-80.

51. Kaneko, Y., Nimmerjahn, F., Ravetch, J.V. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 2006; 313 (5787): 670-3.

52. Scallon, B.J., Tam, S.H., McCarthy, S.G., Cai, A.N., Raju, T.S. Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality. Mol. Immunol., 2007; 44: 1524-1534.

53. Herold, K.C., Burton, J.B., Francois, F., Poumian-Ruiz, E., Glandt, M., Bluestone, J.A. Activation of human T cells by FcR nonbinding anti-CD3 mAb, hOKT3gamma1 (Ala-Ala). J. Clin. Invest. 2003; 111 (3): 409-18.

54. Carpenter, P.A., Pavlovic, S., Tso, J.Y., et al. Non-Fc receptor-binding humanized anti-CD3 antibodies induce apoptosis of activated human T cells. J. Immunol. 2000; 165 (11): 6205-13.

55. Fishelson, Z., Donin, N., Zell, S., Schultz, S., Kirschfink, M. Obstacles to cancer immunotherapy: expression of membrane complement regulatory proteins (mCRPs) in tumors. Mol. Immunol. 2003; 40 (2-4): 109-23.

56. Bergman, I., Basse, P.H., Barmada, M.A., Griffin, J.A., Cheung, N.K. Comparison of in vitro antibody-targeted cytotoxicity using mouse, rat and human effectors. Cancer Immunol. Immunother. 2000; 49 (4-5): 259-66.

57. Kennedy, A.D., Solga, M.D., Schuman, T.A., et al. An anti-C3b(i) mAb enhances complement activation, C3b(i) deposition, and killing of CD20+ cells by rituximab. Blood 2003; 101 (3): 1071-9.

58. Cortez-Retamozo, V., Backmann, N., Senter, P.D., et al. Efficient cancer therapy with a nanobody-based conjugate. Cancer Res. 2004; 64 (8): 2853-7.

59. Blättler, W.A., Chari, R.V.J., Lambert, J.M. Immunoconjugates. In: Teicher, B.A., ed. Cancer Therapeutics: Experimental and Clinical Agents. Totowa, NJ: Humana Press; 1996: 371-94.

60. Garnett, M.C. Targeted drug conjugates: principles and progress. Adv. Drug Deliv. Rev. 2001; 53 (2): 171-216.

61. Payne, G. Progress in immunoconjugate cancer therapeutics. Cancer Cell 2003; 3 (3): 207-12.

62. Dyba, M., Tarasova, N.I., Michejda, C.J. Small molecule toxins targeting tumor receptors. Curr. Pharm. Des. 2004; 10 (19): 2311-34.

63. Lambert, J.M. Drug-conjugated monoclonal antibodies for the treatment of cancer. Curr. Opinion Pharmacol. 2005; 5 (5): 543-9.

64. Ilyin, S.E., Bernal, A., Horowitz, D., Derian, C.K., Xin, H. Functional informatics: convergence and integration of automation and bioinformatics. Pharmacogenomics 2004; 5 (6): 721-30.

65. Melle, C., Ernst, G., Schimmel, B., et al. A technical triade for proteomic identification and characterization of cancer biomarkers. Cancer Res. 2004; 64 (12): 4099-104.

66. Nicolette, C.A, Miller, G.A. The identification of clinically relevant markers and therapeutic targets. Drug Discov. Today 2003; 8 (1): 31-8.

67. Frank, R., Hargreaves, R. Clinical biomarkers in drug discovery and development. Nat. Rev. Drug Discov. 2003; 2 (7): 566-80.

68. Mandler, R., Kobayashi, H., Hinson, E.R., Brechbiel, M.W., Waldmann, T.A. Her-ceptin-geldanamycin immunoconjugates: pharmacokinetics, biodistribution, and enhanced antitumor activity. Cancer Res. 2004; 64 (4): 1460-7.

Liu, C., Tadayoni, B.M., Bourret, L.A., et al. Eradication of large colon tumor xenografts by targeted delivery of maytansinoids. Proc. Natl. Acad. Sci. USA 1996; 93 (16): 8618-23.

Hood, J.D., Bednarski, M., Frausto, R., et al. Tumor regression by targeted gene delivery to the neovasculature. Science 2002; 296 (5577): 2404-7. Bhaskar, V., Law, D.A., Ibsen, E., et al. E-selectin up-regulation allows for targeted drug delivery in prostate cancer. Cancer Res. 2003; 63 (19): 6387-94. Blättler, W.A., Chari, R.V.J. Drugs to enhance the therapeutic potency of anticancer antibodies: antibody-drug conjugates as tumor-activated prodrugs. In: Ojima, I., Vite, G.D., Altmann, K.-H., eds. Anticancer Agents: Frontiers in Cancer Chemotherapy. Washington, DC: American Chemical Society; 2001: 317-38. Moody, T.W., Czerwinski, G., Tarasova, N.I., Michejda, C.J. VIP-ellipticine derivatives inhibit the growth of breast cancer cells. Life Sci. 2002; 71 (9): 1005-14. Steinman, R.M., Silver, J.M., Cohn, Z.A. Pinocytosis in fibroblasts: quantitative studies in vitro. J. Cell. Biol. 1974; 63 (3): 949-69.

Goldstein, J.L., Anderson, R.G., Brown, M.S. Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature 1979; 279 (5715): 679-85. Parton, R.G., Simons, K. Digging into caveolae. Science 1995; 269 (5229): 1398-9. Haas, M., Moolenaar, F., Elsinga, A., et al. Targeting of doxorubicin to the urinary bladder of the rat shows increased cytotoxicity in the bladder urine combined with an absence of renal toxicity. J. Drug Target 2002; 10 (1): 81-9. Hamann, P.R., Hinman, L.M., Beyer, C.F., et al. An anti-CD33 antibody-calichea-micin conjugate for treatment of acute myeloid leukemia: choice of linker. Bioconjug. Chem. 2002; 13 (1): 40-6.

Falnes, P.O., Sandvig, K. Penetration of protein toxins into cells. Curr. Opinion Cell. Biol. 2000; 12 (4): 407-13.

Widdison, W.C., Wilhelm, S.D., Cavanagh, E.E., et al. Semisynthetic maytansine analogues for the targeted treatment of cancer. J. Med. Chem. 2006; 49 (14): 4392-408. Erickson, H.K., Park, P.U., Widdison, W.C., et al. Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. Cancer Res. 2006; 66 (8): 4426-33.

Saito, G., Swanson, J.A., Lee, K.D. Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. Adv. Drug Deliv. Rev. 2003; 55 (2): 199-215.

Arner, E.S., Holmgren, A. Physiological functions of thioredoxin and thioredoxin reductase. Eur. J. Biochem. 2000; 267 (20): 6102-9.

Holmgren, A. Antioxidant function of thioredoxin and glutaredoxin systems. Antioxid. Redox. Signal 2000; 2 (4): 811-20.

Phan, U.T., Maric, M., Dick, T.P., Cresswell, P. Multiple species express thiol oxido-reductases related to GILT. Immunogenetics 2001; 53 (4): 342-6. Phan, U.T., Arunachalam, B., Cresswell, P. Gamma-interferon-inducible lysosomal thiol reductase (GILT): maturation, activity, and mechanism of action. J. Biol. Chem. 2000; 275 (34): 25907-14.

Arunachalam, B., Phan, U.T., Geuze, H.J., Cresswell, P. Enzymatic reduction of disulfide bonds in lysosomes: characterization of a gamma-interferon-inducible lyso-somal thiol reductase (GILT). Proc. Natl. Acad. Sci. USA 2000; 97 (2): 745-50. Francisco, J.A., Cerveny, C.G., Meyer, D.L., et al. cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood 2003; 102 (4): 1458-65.

89. Dubowchik, G.M., Firestone, R.A., Padilla, L., et al. Cathepsin B-labile dipeptide linkers for lysosomal release of doxorubicin from internalizing immunoconjugates: model studies of enzymatic drug release and antigen-specific in vitro anticancer activity. Bioconjug. Chem. 2002; 13 (4): 855-69.

90. Suzawa, T., Nagamura, S., Saito, H., Ohta, S., Hanai, N., Yamasaki, M. Synthesis of a novel duocarmycin derivative DU-257 and its application to immunoconjugate using poly(ethylene glycol)-dipeptidyl linker capable of tumor specific activation. Bioorg. Med. Chem. 2000; 8 (8): 2175-84.

91. de Groot, F.M., Albrecht, C., Koekkoek, R., Beusker, P.H., Scheeren, H.W. "Cascade-release dendrimers" liberate all end groups upon a single triggering event in the dendritic core. Angew. Chem. Int. Ed. Engl. 2003; 42 (37): 4490-4.

92. Freise, J., Muller, W.H., Brolsch, C., Schmidt, F.W. In vivo distribution of liposomes between parenchymal and non parenchymal cells in rat liver. Biomedicine 1980; 32 (3): 118-23.

93. Roerdink, F., Dijkstra, J., Hartman, G., Bolscher, B., Scherphof, G. The involvement of parenchymal, Kupffer and endothelial liver cells in the hepatic uptake of intravenously injected liposomes: effects of lanthanum and gadolinium salts. Biochim. Bio-phys. Acta 1981; 677 (1): 79-89.

94. Jones, M.N., Nicholas, A.R. The effect of blood serum on the size and stability of phospholipid liposomes. Biochim. Biophys. Acta 1991; 1065 (2): 145-52.

95. Schenkman, S., Araujo, P.S., Dijkman, R., Quina, F.H., Chaimovich, H. Effects of temperature and lipid composition on the serum albumin-induced aggregation and fusion of small unilamellar vesicles. Biochim. Biophys. Acta 1981; 649 (3): 633-47.

96. Hernandez-Caselles, T., Villalain, J., Gomez-Fernandez, J.C. Influence of liposome charge and composition on their interaction with human blood serum proteins. Mol. Cell. Biochem. 1993; 120 (2): 119-26.

97. Strejan, G.H., Essani, K., Surlan, D. Naturally occurring antibodies to liposomes, II: specificity and electrophoretic pattern of rabbit antibodies reacting with sphingomy-elin-containing liposomes. J. Immunol. 1981; 127 (1): 160-5.

98. Szebeni, J., Wassef, N.M., Rudolph, A.S., Alving, C.R. Complement activation in human serum by liposome-encapsulated hemoglobin: the role of natural anti-phospholipid antibodies. Biochim. Biophys. Acta 1996; 1285 (2): 127-30.

99. Klibanov, A.L., Maruyama, K., Torchilin, V.P., Huang, L. Amphipathic polyethylene-glycols effectively prolong the circulation time of liposomes. FEBS Lett. 1990; 268 (1): 235-7.

100. Blume, G., Cevc, G. Liposomes for the sustained drug release in vivo. Biochim. Biophys. Acta 1990; 1029 (1): 91-7.

101. Allen, T.M. The use of glycolipids and hydrophilic polymers in avoiding rapid uptake of liposomes by the mononuclear phagocyte system, Adv. Drug Deliv. Rev. 1994; 13 (3): 285-309.

102. Scherphof, G., Morselt, H., Allen, T. Intrahepatic distribution of long circulating liposomes containing poly (ethylene glycol) istearoyl phosphatidylethanolamine. J. Liposome Res. 1994; 4: 213-28.

103. Woodle, M.C., Storm, G., eds. Long Circulating Liposomes: Old Drugs, New Therapeutics. New York: Springer-Verlag; 1997.

104. Uziely, B., Jeffers, S., Isacson, R., et al. Liposomal doxorubicin: antitumor activity and unique toxicities during two complementary phase I studies. J. Clin. Oncol. 1995; 13 (7): 1777-85.

Maruyama, K., Takahashi, N., Tagawa, T., Nagaike, K., Iwatsuru, M. Immunolipo-somes bearing polyethyleneglycol-coupled Fab' fragment show prolonged circulation time and high extravasation into targeted solid tumors in vivo. FEBS Lett. 1997; 413 (1): 177-80.

Moreira, J.N., Gaspar, R., Allen, T.M. Targeting Stealth liposomes in a murine model of human small cell lung cancer. Biochim. Biophys. Acta 2001; 1515 (2): 167-76. Park, J.W., Kirpotin, D.B., Hong, K., et al. Tumor targeting using anti-HER2 immu-noliposomes. J. Control Release 2001; 74 (1-3): 95-113.

Maruyama, K., Ishida, O., Takizawa, T., Moribe, K. Possibility of active targeting to tumor tissues with liposomes. Adv. Drug Deliv. Rev. 1999; 40 (1-2): 89-102. Weinstein, J.N., van Osdol, W. Early intervention in cancer using monoclonal antibodies and other biological ligands: micropharmacology and the "binding site barrier." Cancer Res. 1992; 52 (9 Suppl.): 2747s-51s.

Park, J.W., Hong, K., Kirpotin, D.B., et al. Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin. Cancer Res. 2002; 8 (4): 1172-81. Lopes de Menezes, D.E., Pilarski, L.M., Allen, T.M. In vitro and in vivo targeting of immunoliposomal doxorubicin to human B-cell lymphoma. Cancer Res. 1998; 58 (15): 3320-30.

Sugano, M., Egilmez, N.K., Yokota, S.J., et al. Antibody targeting of doxorubicin-loaded liposomes suppresses the growth and metastatic spread of established human lung tumor xenografts in severe combined immunodeficient mice. Cancer Res. 2000; 60 (24): 6942-9.

Grillo-Lopez, A.J., Hedrick, E., Rashford, M., Benyunes, M. Rituximab: ongoing and future clinical development. Semin. Oncol. 2002; 29 (1 Suppl. 2): 105-12. Leyland-Jones, B. Trastuzumab: hopes and realities. Lancet Oncol. 2002; 3 (3): 137-44. Sievers, E.L., Linenberger, M. Mylotarg: antibody-targeted chemotherapy comes of age. Curr. Opinion Oncol. 2001; 13 (6): 522-7.

Ferrajoli, A., O'Brien, S., Keating, M.J. Alemtuzumab: a novel monoclonal antibody. Expert Opinion Biol. Ther. 2001; 1 (6): 1059-65.

Goldenberg, D.M. The role of radiolabeled antibodies in the treatment of non-Hodgkin's lymphoma: the coming of age of radioimmunotherapy. Crit. Rev. Oncol. Hematol. 2001; 39 (1-2): 195-201.

GlaxoSmithKline. Bexxar® for non-Hodgkin's Lymphoma. Accessed March 4, 2007.

Genentech. Avastin® (bevacizumab). oncology/avastin. Accessed March 4, 2007.

Bristol-Meyers Squibb. Erbitux® (cetuximab). home/index.jsp?BV_UseBVCookie=Yes. Accessed March 4, 2007. Wahl, A.F., Donaldson, K.L., Mixan, B.J., Trail, P.A., Siegall, C.B. Selective tumor sensitization to taxanes with the mAb-drug conjugate cBR96-doxorubicin. Int. J. Cancer 2001; 93 (4): 590-600.

Mansfield, E., Pastan, I., FitzGerald, D.J. Characterization of RFB4-Pseudomonas exotoxin A immunotoxins targeted to CD22 on B-cell malignancies. Bioconjug. Chem. 1996; 7 (5): 557-63.

Johnson, T.A., Press, O.W. Therapy of B-cell lymphomas with monoclonal antibodies and radioimmunoconjugates: the Seattle experience. Ann. Hematol. 2000; 79 (4): 175-82.

Knox, S.J., Goris, M.L., Trisler, K., et al. Yttrium-90-labeled anti-CD20 monoclonal antibody therapy of recurrent B-cell lymphoma. Clin. Cancer Res. 1996; 2 (3): 457-70.

Was this article helpful?

0 0
10 Ways To Fight Off Cancer

10 Ways To Fight Off Cancer

Learning About 10 Ways Fight Off Cancer Can Have Amazing Benefits For Your Life The Best Tips On How To Keep This Killer At Bay Discovering that you or a loved one has cancer can be utterly terrifying. All the same, once you comprehend the causes of cancer and learn how to reverse those causes, you or your loved one may have more than a fighting chance of beating out cancer.

Get My Free Ebook

Post a comment