1 Langer, R. Tissue engineering. Mol. Ther. 2000, 1, 12-15.

2 Langer, R. and Vacanti, J. P. Tissue engineering. Science 1993, 260, 920-926.

3 Prochazkova, J. Contribution of 'in vitro' assays to preclinical and premarketing testing in immunotoxicology. Cent. Eur. J. Public Health 1993, 1(2), 101-105.

4 Petersen, J. P., Rucker, A., von Stechow, D., Adamietz, P., Portner, R., Rueger, J. M., and Meenen, N. M. Present and future therapies of articular cartilage defects. Eur. J. Trauma 2003, 1, 1-10.

5 Bradlaw, J. A. Evaluation of drug and chemical toxicity with cell culture systems. Fund. Appl. Toxicol. 1986, 6(4), 598-606.

6 Chamuleau, R. A. Artificial liver support in the third millennium. Artif. Cells Blood Substit. Immobil. Biotechnol. 2003, 31, 117-126.

7 Martin, I., Wendt, D., and Heberer, M. The role of bioreactors in tissue engineering. Trends Biotechnol. 2004, 22, 80-86.

8 Griffith, L. G. and Naughton, G. Tissue engineering - current challenges and expanding opportunities. Science 2002, 295, 1009-1014.

9 Bhadriraju, K. and Chen, C. S. Engineering cellular microenvironments to improve cell-based drug testing. Drug Discov. Today 2002, 7(11), 612-620.

10 Balcarcel, R. R. and Clark, L. M. Metabolic screening of mammalian cell cultures using well-plates. Biotechnol. Prog. 2003, 19(1), 98-108.

11 Kunz-Schughart, L. A., Freyer, J. P., Hofstaedter, F., and Ebner, R. The use of 3D cultures for high-throughput screening: the multicellular spheroid model. J. Biomol. Screen. 2004, 9(4), 273-285.

12 DeClerck, Y. A. and Neustein, H. B. The contribution of tissue culture to the study of solid tumors of childhood. Perspect. Pediatr. Pathol. 1987, 9, 214-243.

13 Balimane, P. V. and Chong, S. Cell culture-based models for intestinal permeability: a critique. Drug Discov. Today 2005, 10(5), 335-343.

14 Kaspers, G. J., Zwaan, C. M., Pieters, R., and Veerman, A. J. Cellular drug resistance in childhood acute myeloid leukemia. A mini-review with emphasis on cell culture assays. Adv. Exp. Med. Biol. 1999, 457, 415-421.

15 Ratcliffe, A. and Niklason, L. E. Bioreactors and bioprocessing for tissue engineering. Ann. N. Y. Acad. Sci. 2002, 961, 210-215.

16 Naughton, G. K. From lab bench to market: critical issues in tissue engineering. Ann. N. Y. Acad. Sci. 2002, 961, 372-385.

17 Darling, E. M. and Athanasiou, K. A. Articular cartilage bioprocesses and bioreactors. Tissue Eng. 2003, 9, 9-26.

18 Allen, J. W. and Bhatia, S. N. Improving the next generation of bioartificial liver devices. Semin. Cell Dev. Biol. 2002, 13, 447-454.

19 Barron, V., Lyons, E., Stenson-Cox, C., McHugh, P. E., and Pandit, A. Bioreactors for cardiovascular cell and tissue growth: a review. Ann. Biomed. Eng. 2003, 31, 1017-1030.

20 Godbey, W. T. and Atala, A. In vitro systems for tissue engineering. Ann. N. Y. Acad. Sci. 2002, 961, 10-26.

21 Morsi, Y. S., Birchall, I. E., and Rosenfeldt, F. L. Artificial aortic valves: an overview. Int. J. Artif. Organs 2004, 27, 445-451.

22 Park, K. D., Kwon, I. K., and Kim, Y. H. Tissue engineering of urinary organs. Yonsei Med. J. 2000, 41, 780-788.

23 Shachar, M. and Cohen, S. Cardiac tissue engineering, ex-vivo: design principles in biomaterials and bioreactors. Heart Fail. Rev. 2003, 8, 271-276.

24 Vunjak-Novakovic, G. The fundamentals of tissue engineering: scaffolds and bioreactors. Novartis Found. Symp. 2003, 249, 34-46.

25 Pörtner, R., Nagel-Heyer, St., Goepfert, Ch., Adamietz, P., and Meenen, N. M. Bioreactor design for tissue engineering. J. Bioeng. Biosci. 2005, 100(3), 235-245.

26 Nagel-Heyer, S., Goepfert, Ch., Morlock, M. M., and Pörtner, R. Relationship between gross morphological and biochemical data of tissue engineered cartilage-carrier-constructs. Biotechnol. Lett. 2005, 27, 187-192.

27 Malda, J., van Blitterswijk, C. A., van Geffen, M., Martens, D. E., Tramper, J., and Riesle, J. Low oxygen tension stimulates redifferentiation of dedifferentiated adult human nasal chondrocytes. Osteoarthritis Cartilage 2004, 12, 306-313.

28 Domm, C., Schünke, M., Christesen, K., and Kurz, B. Redifferentiation of dedifferentiated bovine articular chondrocytes in alginate culture under low oxygen tension. Osteoarthritis Cartilage 2002, 10, 13-22.

29 Nagel-Heyer, S., Leist, Ch., Lünse, S., Goepfert, C., and Pörtner, R. From biopsy to cartilage-carrier constructs by using microcarrier cultures as sub-process. In: Proceedings of 19th ESACT meeting. Harrogate, UK, 2005, p. 139.

30 Malda, J., van den Brink, P., Meeuwse, P., Grojec, M., Martens, D. E., Tramper, J., Riesle, J., and van Blitterswijk, C. A. Effect of oxygen tension on adult articular chondrocytes in microcarrier bioreactor culture. Tissue Eng. 2004, 10, 987-994.

31 Bardouille, C., Lehmann, J., Heimann, P., and Jockusch, H. Growth and differentiation of permanent and secondary mouse myogenic cell lines on microcarriers. Appl. Microbiol. Biotechnol. 2001, 55, 556-562.

32 Freed, L. E., Langer, R., Martin, I., Pellis, N. R., and Vunjak-Novakovic, G. Tissue engineering of cartilage in space. Proc. Natl. Acad. Sci. USA 1997, 94, 13885-13890.

33 Holy, C. E., Shoichet, M. S., and Davies, J. E. Engineering three-dimensional bone tissue in vitro using biodegradable scaffolds: investigating initial cell-seeding density and culture period. J. Biomed. Mater. Res. 2000, 51, 376-382.

34 Carrier, R. L., Papadaki, M., Rupnick, M., Schoen, F. J., Bursac, N., Langer, R., Freed, L. E., and Vunjak-Novakovic, G. Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterisation. Biotechnol. Bioeng. 1999, 64, 580-589.

35 Kannan, R. Y., Salacinski, H. J., Sales, K., Butler, P., and Seifalian, A. M. The roles of tissue engineering and vascularisation in the development of micro-vascular networks: a review. Biomaterials 2005, 26, 1857-1875.

36 Fassnacht, D. and Pörtner, R. Experimental and theoretical considerations on oxygen supply for animal cell growth in fixed bed reactors. J. Biotechnol. 1999, 72, 169-184.

37 Butler, D. L., Goldstein, S. A., and Guilak, F. Functional tissue engineering: the role of biomechanics. J. Biomech. Eng. 2000, 122, 570-575.

38 Carver, S. E. and Heath, C. A. Increasing extracellular matrix production in regenerating cartilage with intermittent physiological pressure. Biotechnol. Bioeng. 1999, 62, 166-174.

39 Carver, S. E. and Heath, C. A. Influence of intermittent pressure, fluid flow, and mixing in the regenerative properties of articular chondrocytes. Biotechnol. Bioeng. 1999, 65, 274-281.

40 Hall, A. C., Urban, J. P. G., and Gehl, K. A. The effects of hydrostatic pressure on matrix synthesis in articular cartilage. J. Orthop. Res. 1991, 9, 1-10.

41 Jagodzinski, M., Cebotari, S., Tudorache, I., Zeichen, J., Hankemeier, S., Krettek, C., van Griensven, M., and Mertsching, H. Tissue engineering of long bones with a vascular matrix in a bioreactor. Orthopade 2004, 33, 1394-1400.

42 Seidel, J. O., Pei, M., Gray, M. L., Langer, R., Freed, L. E., and Vunjak-Novakovic, G. Long-term culture of tissue engineered cartilage in a perfused chamber with mechanical stimulation. Biorheology 2004, 41, 445-458.

43 Yu, X., Botchwey, E. A., Levine, E. M., Pollack, S. R., and Laurencin, C. T. Bioreactor-based bone tissue engineering: the influence of dynamic flow on osteoblast phenotypic expression and matrix mineralization. Proc. Natl. Acad. Sci. USA 2004, 101, 11203-11208.

44 Nagel-Heyer, St. Engineering aspects for generation of three-dimensional cartilage-carrier-constructs. Books on Demand GmbH, Norderstedt, Germany, 2004.

45 Garvin, J., Qi, J., Maloney, M., and Banes, A. J. Novel system for engineering bioartificial tendons and application of mechanical load. Tissue Eng. 2003, 9(5), 967-979.

46 Morgan, J. R. and Yarmush, M. L. Tissue engineering methods and protocols. Humana Press, Totowa, NJ, 1999.

47 Sen, A., Kallos, M. S., and Behie, L. A. New tissue dissociation protocol for scaled-up production of neural stem cells in suspension bioreactors. Tissue Eng. 2004, 10, 904-913.

48 Fassnacht, D., Rössing, S., Singh, R., Al-Rubeai, M., and Pörtner, R. Influence of BCL-2 Expression on antibody productivity in high cell density hybridoma culture systems. Cytotechnology 1999, 30, 95-105.

49 Fussenegger, M., Fassnacht., D., Schwartz, R., Zanghi, J. A., Graf, M., Bailey, J. E., and Pörtner, R. Regulated overexpression of the survival factor bcl-2 in CHO cells increases viable cell density in batch culture and decreases DNA release in extended fixed-bed cultivation. Cytotechnology 2000, 32, 45-61.

50 Nehring, D., Gonzales, R., Czermak, P., and Pörtner, R. Mathematical model of a membrane filtration process using ceramic membranes to increase retroviral pseudotype vector titer. J. Membr. Sci. 2004, 237, 25-38.

51 Fassnacht, D., Rössing S., Stange, J., and Pörtner. R. Long-term cultivation of immortalised mouse hepatocytes in a high cell density fixed bed reactor. Biotechnol. Tech. 1998, 12, 25-30.

52 Noll, T., Jelinek, N., Schmid, S., Biselli, M., and Wandrey, C. Cultivation of hematopoietic stem and progenitor cells: biochemical engineering aspects. Adv. Biochem. Eng. Biotechnol. 2002, 74, 111-128.

53 Cabrita, G. J., Ferreira, B. S., da Silva, C. L., Goncalves, R., Almeida-Porada, G., and Cabral, J. M. Hematopoietic stem cells: from the bone to the bioreactor. Trends Biotechnol. 2003, 21, 233-240.

54 Schubert, H., Garrn, I., Berthold, A., Knauf, W. U., Reufi, B., Fietz, T., and Gross, U. M. Culture of haematopoietic cells in a 3D bioreactor made of Al2O3 or apatite foam. J. Mater. Sci. Mater. Med. 2004, 15, 331-334.

55 Ma, T., Yang, S. T., and Kniss, D. A. Development of an in vitro human placenta model by the cultivation of human trophoblasts in a fiber-based bioreactor system. Tissue Eng. 1999, 5(2), 91-102.

56 Davis, J. M. and Hanak, J. A. Hollow-fiber cell culture. Methods Mol. Biol. 1997, 75, 77-89.

57 Weichert, H., Falkenberg, F. W., Krane, M., Behn, I., Hommel, U., and Nagels, H. O. Cultivation of animal cells in a new modular minifermenter. In: Beuvery, E. C., Griffiths, J. B., and Zeijlemaker, W. P. (Eds.), Animal Cell Technology: Developments towards the 21st century. Kluwer Academic Publishers, The Netherlands, 1995, pp. 907-913.

58 Nagel, A., Effenberger, E., Koch, S., Lübbe, L., and Marx, U. Human cancer and primary cell culture in the new hybrid bioreactor system tecnomouse. In: Spier, R. E., Griffiths, J. B., and Berthold W. (Eds.), Animal Cell Technology: Products of today, prospects for tomorrow. Butterworth-Heinemann, Oxford, 1994, pp. 296-298.

59 De Bartolo, L. and Bader, A. Review of a flat membrane bioreactor as a bioartificial liver. Ann. Transplant. 2001, 6, 40-46.

60 Jasmund, I. and Bader, A. Bioreactor developments for tissue engineering applications by the example of the bioartificial liver. Adv. Biochem. Eng. Biotechnol. 2002, 74, 99-109.

61 Kulig, K. M. and Vacanti, J. P. Hepatic tissue engineering. Transpl. Immunol. 2004, 12, 303-310.

62 Gerlach, J. C. Development of a hybrid liver support system: a review. Int. J. Artif. Organs 1996, 19, 645-654.

63 Sielaff, T. D., Hu, M. Y., Amiot, B., Rollins, M. D., Rao, S., McGuire, B., Bloomer, J. R., Hu, W. S., and Cerra, F. B. Gel-entrapment bioartificial liver therapy in galactosamine hepatitis. J. Surg. Res. 1995, 59, 179-184.

64 Ostrovidov, S., Jiang, J., Sakai, Y., and Fujii, T. Membrane-based PDMS microbioreactor for perfused 3D primary rat hepatocyte cultures. Biomed. Microdevices 2004, 6(4), 279-287.

65 Prenosil, J. E. and Villeneuve, P. E. Automated production of cultured epidermal autografts and sub-confluent epidermal autografts in a computer controlled bioreactor. Biotechnol. Bioeng. 1998, 59, 679-683.

66 Marx, U., Matthes, H., Nagel, A., and Baehr, R. V. Application of a hollow fiber membrane cell culture system in medicine. Am. Biotechnol. Lab. 1993, 11, 26.

67 Zhau, H. E., Goodwin, T. J., Chang, S. M., Baker, T. L., and Chung, L. W. Establishment of a three-dimensional human prostate organoid coculture under microgravity-simulated conditions: evaluation of androgen-induced growth and PSA expression. In Vitro Cell Dev. Biol. Anim. 1997, 33(5), 375-380.

68 Minuth, W. W., Stöckl, G., Kloth, S., and Dermietzel, R. Construction of an apparatus for perfusion cell cultures which enables in vitro experiments under organotypic conditions. Eur. J. Cell. Biol. 1992, 57, 132-137.

69 Nagel-Heyer, S., Goepfert, Ch., Adamietz, P., Meenen, N. M., Petersen, J.-P., and Pörtner, R. Flow-chamber bioreactor culture for generation of three-dimensional cartilage-carrier-constructs. Bioproc. Biosyst. Eng. 2005, 27, 273-280.

70 Ratcliffe, A. Tissue engineering of vascular grafts. Matrix Biol. 2000, 19, 353-357.

71 Risbud, M. V. and Sittinger, M. Tissue engineering: advances in in vitro cartilage generation. Trends Biotechnol. 2002, 20, 351-356.

72 Minuth, W. W., Strehl, R., and Schumacher, K. Tissue engineering -from cell biology to artificial organs. Wiley-VCH Verlag, Weinheim, 2005.

73 Sittinger, M., Schultz, O., Keyser, G., Minuth, W. W., and Burmester, G. R. Artificial tissues in perfusion culture. Int. J. Artif. Organs 1997, 20, 57-62.

74 Nehring, D., Adamietz, P., Meenen, N. M., and Pörtner, R. Perfusion cultures and modelling of oxygen uptake with three-dimensional chondrocyte pellets. Biotechnol. Tech. 1999, 13, 701-706.

75 Koebe, H. G., Deglmann, C. J., Metzger, R., Hoerrlein, S., and Schildberg, F. W. In vitro toxicology in hepatocyte bioreactors-extracellular acidification rate (EAR) in a target cell line indicates hepato-activated transformation of substrates. Toxicology 2000, 154(1-3), 31-44.

76 Zeilinger, K., Sauer, I. M., Pless, G., Strobel, C., Rudzitis, J., Wang, A., Nussler, A. K., Grebe, A., Mao, L., Auth, S. H., Unger, J., Neuhaus, P., and Gerlach, J. C. Three-dimensional co-culture of primary human liver cells in bioreactors for in vitro drug studies: effects of the initial cell quality on the long term maintenance of hepatocyte-specific functions. Altern. Lab. Anim. 2002, 30(5), 525-538.

77 Thielecke, H., Mack, A., and Robitzki, A. A multicellular spheroid-based sensor for anti-cancer therapeutics. Biosens. Bioelectron. 2001, 16(4-5), 261-269.

78 Kelm, J. M., Ehler, E., Nielsen, L. K., Schlatter, S., Perriard, J. C., and Fussenegger, M. Design of artificial myocardial microtissues. Tissue Eng. 2004, 10(1-2), 201-214.

79 Park, T. H. and Shuler, M. L. Integration of cell culture and microfabrication technology. Biotechnol. Prog. 2003, 19(2), 243-253.

80 Stett, A., Egert, U., Guenther, E., Hofmann, F., Meyer, T., Nisch, W., and Haemmerle, H. Biological application of microelectrode arrays in drug discovery and basic research. Anal. Bioanal. Chem. 2003, 377(3), 486-495.

81 Li, N., Tourovskaia, A., and Folch, A. Biology on a chip: microfabrication for studying the behaviour of cultured cells. Crit. Rev. Biomed. Eng. 2003, 31(5-6), 423-488.

82 Hoffman, R. M. The three-dimensional question: can clinically relevant tumor drug resistance be measured in vitro? Cancer Metastasis Rev. 1994, 13(2), 169-173.

83 Vickers, A. E. and Fisher, R. L. Organ slices for the evaluation of human drug toxicity. Chem. Biol. Interact. 2004, 150(1), 87-96.

84 Padron, J. M., van der Wilt, C. L., Smid, K., Smitskamp-Wilms, E., Backus, H. H., Pizao, P. E., Giaccone, G., and Peters, G. J. The multi-layered postconfluent cell culture as a model for drug screening. Crit. Rev. Oncol. Hematol. 2000, 36(2-3), 141-157.

85 Thelwall, P. E., Anthony, M. L., Fassnacht, D., Portner, R., and Brindle, K. M. Analysis of cell growth in a fixed bed bioreactor using magnetic resonance spectroscopy and imaging. In: Merten, O.-W., Perrin, P., and Griffiths, B. (Eds.), New Developments and New Applications in Animal Cell Technology. Kluwer Academic Publishers, The Netherlands, 1998, pp. 627-633.

86 Lima, E. G., Mauck, R. L., Shelley, H. H., Park, S., Ng, K. W., Ateshian, G. A., and Hung, C. T. Functional tissue engineering of chondral and osteochondral constructs. Biorheology 2004, 41, 577-590.

87 Raimondi, M. T., Boschetti, F., Falcone, L., Fiore, G. B., Remuzzi, A., Marinoni, E., Marazzi, M., and Pietrabiss, R. Mechanobiology of engineered cartilage cultured under a quantified fluid-dynamic environment. Biomech. Model. Mechanobiol. 2002, 1, 69-82.

88 Connelly, J. T., Vanderploeg, E. J., and Levenston, M. E. The influence of cyclic tension amplitude on chondrocyte matrix synthesis: experimental and finite element analyses. Biorheology 2004, 41, 377-387.

89 Sengers, B. G., Oomens, C. W. J., and Baaijens, F. P. T. An integrated finite-element approach to mechanics, transport and biosynthesis in tissue engineering. J. Biomech. Eng. 2004, 126, 83-91.

90 Williams, K. A., Saini, S., and Wick, T. M. Computational fluid dynamics modelling of steady-state momentum and mass transport in a bioreactor for cartilage tissue engineering. Biotechnol. Prog. 2002, 18, 951-963.

91 Mauck, R. L., Hung, C. T., and Ateshian, G. A. Modelling of neutral solute transport in a dynamically loaded porous permeable gel: Implications for articular cartilage biosynthesis and tissue engineering. J. Biomech. Eng. 2003, 125, 602-614.

92 Begley, C. M. and Kleis, S. J. The fluid dynamic and shear environment in the NASA/JSC rotating-wall perfused-vessel bioreactor. Biotechnol. Bioeng. 2000, 70, 32-40.

93 Anonymous. Good bye, flat biology? Nature 2003, 424, 861.

94 Griffith, L. and Swartz, M. A. Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 2006, 7(3), 211-224.

95 Abbott, A. Biology's new dimension. Nature 2003, 424, 870-872.

96 Wilson, A. and Trumpp, A. Bone-marrow haematopoietic stem-cell niches. Nat. Rev. Immunol. 2006, 6(2), 93-106.

97 Mohtashami, M., and Zuniga-Pflucker, J. C. Cutting edge: three-dimensional architecture of the thymus is required to maintain delta-like expression necessary for inducing T-cell development. J. Immunol. 2006, 176, 730-734.

98 Bell, E. Why 3D is better than 2D. Nat. Rev. Immunol. 2006, 6(2), 87.

99 Lutolf, M. P. and Hubbell, J. A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 2005, 23(1), 47-55.

100 Carswell, K. S. and Papoutsakis E. T. Extracellular pH affects the proliferation of cultured human T cells and their expression of the inter-leukin-2 receptor. J. Immunother. 2000, 23(6), 669-674.

101 Carswell, K. S., Weiss, J. W., and Papoutsakis E. T. Low oxygen tension enhances the stimulation and proliferation of human T-lymphocytes in the presence of IL-2. Cytotherapy 2000, 2(1), 25-37.

102 Koller, M. R., Bender, J. G., Miller, W. M., and Papoutsakis, E. T. Reduced oxygen tension increases hematopoiesis in long-term culture of human stem and progenitor cells from cord blood and bone marrow. Exp. Hematol. 1992, 20(2), 264-270.

103 Dustin, M. L., Allen, P. M., and Shaw, A. S. Environmental control of immunological synapse formation and duration. Trends Immunol. 2001, 22(4), 192-194.

104 Li, Q. J., Dinner, A. R., Qi, S., Irvine, D. J., Huppa, J. B., Davis, M. M., and Chakraborty, A. K. CD4 enhances T-cell sensitivity to antigen by coordinating Lck accumulation at the immunological synapse. Nat. Immunol. 2004, 5, 791-799.

105 Thomson, A. The Cytokine Handbook. 3rd edn., Academic Press, London, 1998.

106 Janeway, C. A., Travers, P., Walport, M., and Shlomchik, M. Immunobiology: The Immune system in Health and Disease. 6th edn. Garland Science Publishing, New York, 2005.

107 Reddy, M., Eirikis, E., Davis, C., Davis, H. M., and Prabhakar, U. Comparative analysis of lymphocyte activation marker expression and cytokine secretion profile in stimulated human peripheral blood mononuclear cell cultures: an in vitro model to monitor cellular immune function. J. Immunol. Methods 2004, 293, 127-142.

108 Rodriguez-Caballero, A., Garcia-Montero, A. C., Bueno, C., Almeida, J., Varro, R., Chen, R., Pandiella, A., and Orfao, A. A new simple whole blood flow cytometry-based method for simultaneous identification of activated cells and quantitative evaluation of cytokines released during activation. Lab. Invest. 2004, 84, 1387-1398.

109 Moser, B. and Loetscher, P. Lymphocyte traffic control by chemokines. Nat. Immunol. 2001, 2(2), 123-128.

110 Bachmann, M. F., Kopf M., and Marsland B. J. Chemokines: more than just road signs. Nat. Rev. Immunol. 2006, 6(2), 159-164.

111 von Andrian, U. H. Introduction: chemokines - regulation of immune cell trafficking and lymphoid organ architecture. Semin. Immunol. 2003, 15, 239-241.

112 Suematsu, S. and Watanabe, T. Generation of a synthetic lymphoid tissuelike organoid in mice. Nat. Biotechnol. 2004, 22(12), 1539-1545.

113 Gao, F. G., Jeevarajan, A. S., and Anderson, M. M. Long-term continuous monitoring of dissolved oxygen in cell culture medium for perfused bioreactors using optical oxygen sensors. Biotechnol. Bioeng. 2004, 86(4), 425-433.

114 Kellner, K., Liebsch, G., Klimant, I., Wolfbeis, O. S., Blunk, T., Schulz, M. B., and Gopferich, A. Determination of oxygen gradients in engineered tissue using a fluorescent sensor. Biotechnol. Bioeng. 2002, 80(1), 73-83.

115 von Andrian U. H. and Mempel T. R. Homing and cellular traffic in lymph nodes. Nat. Rev. Immunol. 2003, 3, 867-878.

116 Helmchen, F. and Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2005, 2(12), 932-940.

117 Müller, B., Riedel, M., and Thurner, P. J. Three-dimensional characterization of cell clusters using synchroton-radiation-based micro-computed tomography. Microsc. Microanal. 2006, 12, 97-105.

10 Ways To Fight Off Cancer

10 Ways To Fight Off Cancer

Learning About 10 Ways Fight Off Cancer Can Have Amazing Benefits For Your Life The Best Tips On How To Keep This Killer At Bay Discovering that you or a loved one has cancer can be utterly terrifying. All the same, once you comprehend the causes of cancer and learn how to reverse those causes, you or your loved one may have more than a fighting chance of beating out cancer.

Get My Free Ebook

Post a comment