1 Rothermel, A., Kurz, R., Ruffer, M., Weigel, W., Jahnke, H. G., Sedello, A., Stepan, H., Faber, R., Schulze-Forster, K., and Robitzki, A. Cells on a chip - the use of electric properties for highly sensitive monitoring of blood-derived factors involved in angiotensin II type 1 receptor signalling. Cell Physiol. Biochem. 2005, 16(1-3): 51-58.

2 Heuschkel, M. O., Fejtl, M., Raggenbass, M., Bertrand, D., and Renaud, P. A three-dimensional multi-electrode array for multi-site stimulation and recording in acute brain slices. J. Neurosci. Methods 2002, 114(2): 135-148.

3 Hutzler, M. and Fromherz, P. Silicon chip with capacitors and transistors for interfacing organotypic brain slice of rat hippocampus. Eur. J. Neurosci. 2004, 19(8): 2231-2238.

4 Reppel, M., Boettinger, C., and Hescheler, J. Beta-adrenergic and muscarinic modulation of human embryonic stem cell-derived cardiomyocytes. Cell Physiol. Biochem. 2004, 14(4-6): 187-196.

5 Segev, R., Goodhouse, J., Puchalla J., and Berry, M. J. II. Recording spikes from a large fraction of the ganglion cells in a retinal patch. Nat. Neurosci. 2004, 7(10): 1154-1161.

6 Halbach, M., Egert, U., Hescheler, J., and Banach, K. Estimation of action potential changes from field potential recordings in multicellular mouse cardiac myocyte cultures. Cell Physiol. Biochem. 2003, 13(5): 271-284.

7 Ingebrandt, S., Yeung, C. K., Staab, W., Zetterer, T., and Offenhausser, A. Backside contacted field effect transistor array for extracellular signal recording. Biosens. Bioelectron. 2003, 18(4): 429-435.

8 Pancrazio, J. J., Gray, S. A., Shubin, Y. S., Kulagina, N., Cuttino, D. S., Shaffer, K. M., Eisemann, K., Curran, A., Zim, B., Gross, G. W., and O'Shaughnessy, T. J. A portable microelectrode array recording system incorporating cultured neuronal networks for neurotoxin detection. Biosens. Bioelectron. 2003, 18(11): 1339-1347.

9 Stett, A., Egert, U., Guenther, E., Hofmann, F., Meyer, T., Nisch, W., and Haemmerle, H. Biological application of microelectrode arrays in drug discovery and basic research. Ann. Biomol. Chem. 2003, 377(3): 486-495.

10 Bartholoma, P., Impidjati, Reininger-Mack, A., Zhang, Z., Thielecke, H., and Robitzki, A. A more aggressive breast cancer spheroid model coupled to an electronic capillary sensor system for a high-content screening of cytotoxic agents in cancer therapy: 3-dimensional in vitro tumor spheroids as a screening model. J. Biomol. Screen. 2005, 10(7): 705-714.

11 Ciambrone, G. J., Liu, V. F., Lin, D. C., McGuinness, R. P., Leung, G. K., and Pitchford, S. Cellular dielectric spectroscopy: a powerful new approach to label-free cellular analysis. J. Biomol. Screen. 2004, 9(6): 467-480.

12 Hug, T. S. Biophysical methods for monitoring cell-substrate interactions in drug discovery. Assays Drug Dev. Technol. 2003, 1(3): 479-488.

13 Thielecke, H. Capillary chip-based characterisation of small tissue samples. Med.. Device Technol. 2003, 14(9): 18-20.

14 Reininger-Mack, A., Thielecke, H., and Robitzki, A. A. 3D-biohybrid systems: applications in drug screening. Trends Biotechnol. 2002, 20(2): 56-61.

15 Mestres-Ventura, P., Morguet, A., Schofer, A., Laue, M., and Schmidt, W. Application of silicon sensor technologies to tumor tissue in vitro: detection of metabolic correlates of chemosensitivity. Methods Mol. Med. 2005, 111: 109-125.

16 Otto, A. M., Brischwein, M., Motrescu, E., and Wolf, B. Analysis of drug action on tumor cell metabolism using electronic sensor chips. Arch. Pharm. 2004, 337(12): 682-686.

17 Gimsa, J., and Wachner, D. A unified resistor-capacitor model for impedance, dielectrophoresis, electrorotation, and induced transmembrane potential. Biophys. J. 1998, 75(2): 1107-1116.

18 Foster, K. R. and Schwan, H. P. Dielectric properties of tissues and biological materials: a critical review. Crit. Rev. Biomed. Eng. 1989, 17(1): 25-104.

19 Schwan, H. P. Electrical properties of tissue and cell suspensions. Adv. Biol. Med. Phys. 1957, 5: 147-209.

20 Giaever, I. and Keese, C. R. Monitoring fibroblast behavior in tissue culture with an applied electric field. Proc. Natl. Acad. Sci. USA 1984, 81(12): 3761-3764.

21 Arndt, S., Seebach, J., Psathaki, K., Galla, H. J., and Wegener, J. Bioelectrical impedance assay to monitor changes in cell shape during apoptosis. Biosens. Bioelectron. 2004, 19(6): 583-594.

22 Thielecke, H., Mack, A., and Robitzki, A. A multicellular spheroid-based sensor for anti-cancer therapeutics. Biosens. Bioelectron. 2001, 16(4-5): 261-269.

23 Thielecke, H., Mack, A., and Robitzki, A. Biohybrid microarrays -impedimetric biosensors with 3D in vitro tissues for toxicological and biomedical screening. Fresenius J. Anal. Chem. 2001, 369(1): 23-29.

24 Hoheisel, D., Nitz, T., Franke, H., Wegener, J., Hakvoort, A., Tilling, T., and Galla, H. J. Hydrocortisone reinforces the blood-brain barrier properties in a serum free cell culture system. Biochem. Biophys. Res. Commun. 1998, 247(2): 312-315.

25 Janshoff, A., Wegener, J., Sieber, M., and Galla, H. J. Double-mode impedance analysis of epithelial cell monolayers cultured on shear wave resonators. Eur. Biophys. J. 1996, 25(2): 93-103.

26 Wegener, J., Sieber, M., and Galla, H. J. Impedance analysis of epithelial and endothelial cell monolayers cultured on gold surfaces. J. Biochem. Biophys. Methods 1996, 32(3): 151-170.

27 Tilling, T., Korte, D., Hoheisel, D., and Galla, H. J. Basement membrane proteins influence brain capillary endothelial barrier function in vitro.

28 Wegener, J., Abrams, D., Willenbrink, W., Galla, H. J., and Janshoff, A. Automated multi-well device to measure transepithelial electrical resistances under physiological conditions. Biotechniques 2004, 37(4): 590, 592-594, 596-597.

29 Fromherz, P., Kiessling, V., Kottig, K., and Zeck. G. Membrane transistor with giant lipid vesicle touching a silicon chip. Appl. Phys. 1999, A69, 571-576.

30 Fromherz, P. and Arden, W. Transmission of chemical signal by sequential energy and electron transfer in pigment membrane on semiconductor. Ber. Bunsenges Phys. Chem. 1980, 84, 1045-1050.

31 Tam, L. K. and McConnell, H. M. Supported phospholipid bilayers. Biophys. J. 1985, 47(1): 105-113.

32 Kalb, E., Frey, S., and Tamm, L. K. Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers. Biochim. Biophys. Acta 1992, 1103(2): 307-316.

33 Sackmann, E. Supported membranes: scientific and practical applications. Science 1996, 271(5245): 43-48.

34 Gritsch, S., Nollert, P., Jahnig, F., and Sackmann, E. Impedance spectroscopy of porin and gramicidin pores reconstituted into supported lipid bilayers on indium-tin-oxide electrodes. Langmuir 1998, 14(11): 3118-3125.

35 Lehmann-Horn, F. and Jurkat-Rott, K. Voltage-gated ion channels and hereditary disease. Physiol. Rev. 1999, 79(4): 1317-1372.

36 Neher, E. and Sakmann, B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 1976, 260(5554): 799-802.

37 Lepple-Wienhues, A., Ferlinz, K., Seeger, A., and Schafer, A. Flip the tip: an automated, high quality, cost-effective patch clamp screen. Receptors Channels 2003, 9(1): 13-17.

38 Trumbull, J. D., Maslana, E. S., McKenna, D. G., Nemcek, T. A., Niforatos, W., Pan, J. Y., Parihar, A. S., Shieh, C. C., Wilkins, J. A., Briggs, C. A., and Bertrand, D. High throughput electrophysiology using a fully automated, multiplexed recording system. Receptors Channels 2003, 9(1): 19-28.

39 Asmild, M., Oswald, N., Krzywkowski, K. M., Friis, S., Jacobsen, R. B., Reuter, D., Taboryski, R., Kutchinsky, J., Vestergaard, R. K., Schroder, R. L., Sorensen, C. B., Bech, M., Korsgaard, M. P., and Willumsen, N. J. Upscaling and automation of electrophysiology: toward high throughput screening in ion channel drug discovery. Receptors Channels 2003, 9(1): 49-58.

40 Tao, H., Santa Ana, D., Guia, A., Huang, M., Ligutti, J., Walker, G., Sithiphong, K., Chan, F., Guoliang, T., Zozulya, Z., Saya, S., Phimmachack, R., Sie, C., Yuan, J., Wu, L., Xu, J., and Ghetti, A. Automated tight seal electrophysiology for assessing the potential hERG liability of pharmaceutical compounds. Assay Drug Dev. Technol. 2004, 2(5): 497-506.

41 Shieh, C. C. Automated high-throughput patch-clamp techniques. Drug Discov. Today 2004, 9(13): 551-552.

42 Zheng, W., Spencer, R. H., and Kiss, L. High throughput assay technologies for ion channel drug discovery. Assay Drug Dev. Technol. 2004, 2(5): 543-552.

43 Guo, L. and Guthrie, H. Automated electrophysiology in the preclinical evaluation of drugs for potential QT prolongation. J. Pharmacol. Toxicol. Methods 2005, 52(1): 123-135.

44 Ionescu-Zanetti, C., Shaw, R. M., Seo, J., Jan, Y. N., Jan, L. Y., and Lee, L. P. Mammalian electrophysiology on a microfluidic platform. Proc. Natl. Acad. Sci. USA 2005, 102(26): 9112-9117.

45 Thomas, C. A. Jr, Springer, P. A., Loeb, G. E., Berwald-Netter, Y., and Okun, L. M. A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Exp. Cell Res. 1972, 74(1): 61-66.

46 Gross, G. W., Rieske, E., Kreutzberg, G. W. and Meyer, A. A new fixed-array multi-microelectrode system designed for long-term monitoring of extracellular single unit neuronal activity in vitro. Neurosci. Lett. 1977, 6(2-3): 101-105.

47 Offenhausser, A. and Knoll, W. Cell-transistor hybrid systems and their potential applications. Trends Biotechnol. 2001, 19(2): 62-66.

48 Connolly, P., Clark, P., Curtis, A. S., Dow, J. A., and Wilkinson, C. D. An extracellular microelectrode array for monitoring electrogenic cells in culture. Biosens. Bioelectron. 1990, 5(3): 223-234.

49 Kaul, R. A., Syed, N. I., and Fromherz, P. Neuron-semiconductor chip with chemical synapse between identified neurons. Phys. Rev. Lett. 2004, 92(3): 038102.

50 Pancrazio, J. J., Bey, P. P. Jr, Loloee, A., Manne, S., Chao, H. C., Howard, L. L., Gosney, W. M., Borkholder, D. A., Kovacs, G. T., Manos, P., Cuttino, D. S., and Stenger, D. A. Description and demonstration of a CMOS amplifier-based-system with measurement and stimulation capability for bioelectrical signal transduction. Biosens. Bioelectron. 1998, 13(9): 971-979.

51 Fromherz, P., Offenhausser, A., Vetter, T., and Weis, J. A neuron-silicon junction: a Retzius cell of the leech on an insulated-gate. Science 1991, 252(5010): 1290-1293.

52 Sproessler, C., Denyer, M., Britland, S., Knoll, W., and Offenhausser, A. Electrical recordings from rat cardiac muscle cells using field-effect transistors. Phys. Rev. E. Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 1999, 60(2 PtB): 2171-2176.

53 Breckenridge, L. J., Wilson, R. J., Connolly, P., Curtis, A. S., Dow, J. A., Blackshaw, S. E., and Wilkinson, C. D. Advantages of using microfabricated extracellular electrodes for in vitro neuronal recording.

54 Pine, J. Recording action potentials from cultured neurons with extracellular microcircuit electrodes. J. Neurosci. Methods 1980, 2(1): 19-31.

55 Grumet, A. E., Wyatt, J. L. Jr, and Rizzo, J. F. III. Multi-electrode stimulation and recording in the isolated retina. J. Neurosci. Methods 2000, 101(1): 31-42.

56 Kurz, R., Rothermel, A., Rüffer, M., Urban, C., Jahnke, H.-G., Weigel, W., and Robitzki, A. A functional cardiomyocyte based biosensor for pre-diagnostic monitoring: an angiotensin II study. Proceedings, IFMBE, Medical & Biological Engineering & Computing, 2004, pp. 1727-1983.

57 Meyer, T., Leisgen, C., Gonser, B., and Gunther, E. QT-screen: high-throughput cardiac safety pharmacology by extracellular electrophysiology on primary cardiac myocytes. Assay Drug Dev. Technol. 2004, 2(5): 507-514.

58 Meyer, T., Boven, K. H., Gunther, E., and Fejtl, M. Micro-electrode arrays in cardiac safety pharmacology: a novel tool to study QT interval prolongation. Drug Safety 2004, 27(11): 763-772.

59 Gramowski, A., Schiffmann, D., and Gross, G. W. Quantification of acute neurotoxic effects of trimethyltin using neuronal networks cultured on microelectrode arrays. Neurotoxicology 2000, 21(3): 331-342.

60 Ivorra, A., Genesca, M., Sola, A., Palacios, L., Villa, R., Hotter, G., and Aguilo, J. Bioimpedance dispersion width as a parameter to monitor living tissues. Physiol. Meas. 2005, 26(2): 165-173.

10 Ways To Fight Off Cancer

10 Ways To Fight Off Cancer

Learning About 10 Ways Fight Off Cancer Can Have Amazing Benefits For Your Life The Best Tips On How To Keep This Killer At Bay Discovering that you or a loved one has cancer can be utterly terrifying. All the same, once you comprehend the causes of cancer and learn how to reverse those causes, you or your loved one may have more than a fighting chance of beating out cancer.

Get My Free Ebook

Post a comment