Iron fortification of food is the addition of supplemental iron to a mass-produced food vehicle consumed by target populations at risk of iron deficiency anemia. Among anemia control strategies, iron fortification has the greatest potential to improve the iron status of populations. However, its success has been limited by technical challenges of the fortification process: (i) the identification of a suitable iron compound that does not alter the taste or appearance of the food vehicle but is adequately absorbed and (ii) the inhibitory effect of phytic acid and other dietary components that limit iron absorption. Water-soluble iron compounds, such as ferrous sulfate, are readily absorbed but cause rancidity of fats and color changes in some potential food vehicles (e.g., cereal flours). In contrast, elemental iron compounds do not cause these sensory changes but are poorly absorbed and are unlikely to benefit iron status. Research on iron compounds and iron absorption enhancers that addresses these problems has yielded some promising alternatives. Encapsulated iron compounds prevent some of the sensory changes that occur in fortified food vehicles. The addition of ascorbic acid enhances iron absorption from fortified foods, and NaFe-EDTA provides highly absorbable iron in the presence of phytic acid.

Many iron-fortified products have been tested for the compatibility of the fortificant with the food vehicle and for the bioavailability of the fortified iron, but few efficacy or effectiveness trials have been done. Iron-fortified fish sauce, sugar, infant formula, and infant cereal have been shown to improve iron status. In contrast, attempts to fortify cereal flours with iron have met with little success because they contain high levels of phytic acid and the characteristics of these foods require the use of poorly bioavailable iron compounds.

In the developed world, iron fortification has resulted in decreased rates of iron deficiency and anemia during the past few decades. Some debate remains, however, about the potential for the acquisition of excess iron, which has been associated with increased chronic disease risk in some studies. In Europe, Finland and Denmark have recently discontinued food fortification programs because of concerns of iron overload. Individuals with hereditary hemochromato-sis, ^5/1000 individuals in populations of European descent, are at particular risk of iron overload.

Psychology Of Weight Loss And Management

Psychology Of Weight Loss And Management

Get All The Support And Guidance You Need To Be A Success At The Psychology Of Weight Loss And Management. This Book Is One Of The Most Valuable Resources In The World When It Comes To Exploring How Your Brain Plays A Role In Weight Loss And Management.

Get My Free Ebook

Post a comment